Telegram Group & Telegram Channel
❗️Как обучать языковые модели эффективнее: новое исследование от Harvard, Stanford, MIT и CMU

Свежая статья посвящена исследованию масштабируемости точности вычислений в контексте обучения и использования языковых моделей.

Обнаружен парадокс, чем дольше обучается модель, тем хуже она реагирует на снижение точности после обучения (квантизацию).

Предложен математический аппарат, позволяющий:
- Предсказать деградацию модели при снижении точности
- Найти оптимальный баланс между размером модели, объёмом данных и точностью вычислений
- Спланировать эффективное обучение с учётом будущего использования модели

Результаты подтверждены масштабными экспериментами:
- Более 465 циклов предварительного обучения
- Модели до 1.7B параметров
- Датасеты до 26B токенов

Практическое применение:
- Для инференса: важно учитывать, как долго обучалась модель перед снижением точности
- Для обучения: можно значительно снизить требования к памяти и вычислениям, правильно выбрав точность
- Для планирования: появилась возможность точнее оценивать необходимые ресурсы


❗️Почему это важно?
1. Для бизнеса: потенциальное снижение затрат на обучение и эксплуатацию моделей
2. Для разработчиков: четкие ориентиры при выборе параметров обучения
3. Для исследователей: новый фреймворк для понимания масштабирования моделей
8👍85🔥1



group-telegram.com/blockchainRF/10848
Create:
Last Update:

❗️Как обучать языковые модели эффективнее: новое исследование от Harvard, Stanford, MIT и CMU

Свежая статья посвящена исследованию масштабируемости точности вычислений в контексте обучения и использования языковых моделей.

Обнаружен парадокс, чем дольше обучается модель, тем хуже она реагирует на снижение точности после обучения (квантизацию).

Предложен математический аппарат, позволяющий:
- Предсказать деградацию модели при снижении точности
- Найти оптимальный баланс между размером модели, объёмом данных и точностью вычислений
- Спланировать эффективное обучение с учётом будущего использования модели

Результаты подтверждены масштабными экспериментами:
- Более 465 циклов предварительного обучения
- Модели до 1.7B параметров
- Датасеты до 26B токенов

Практическое применение:
- Для инференса: важно учитывать, как долго обучалась модель перед снижением точности
- Для обучения: можно значительно снизить требования к памяти и вычислениям, правильно выбрав точность
- Для планирования: появилась возможность точнее оценивать необходимые ресурсы


❗️Почему это важно?
1. Для бизнеса: потенциальное снижение затрат на обучение и эксплуатацию моделей
2. Для разработчиков: четкие ориентиры при выборе параметров обучения
3. Для исследователей: новый фреймворк для понимания масштабирования моделей

BY Все о блокчейн/мозге/space/WEB 3.0 в России и мире


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/blockchainRF/10848

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips.
from hk


Telegram Все о блокчейн/мозге/space/WEB 3.0 в России и мире
FROM American