Telegram Group & Telegram Channel
По сети разлетелась новость о том, что ученые "обучили" модель уровня o1 за 50 долларов

"Скоро ИИ будет дешевле пары носков" – пишут в соцсетях. Почему это не совсем так?

Суть исследования, как написано в самой статье, была в поиске наиболее простого способа повторить результаты сложных моделей с точки зрения test-time скейлинга.

Так что фраза "обучили модель" тут сразу вводит в заслуждение. Да, модель действительно обучали, но важно не за сколько, а как. Многие пишут, что использовалась дистилляция, но и это не совсем корректно. Вот какой подход использовался на самом деле:

1. Авторы собрали 59 029 вопросов из 16 источников, включая соревнования по математике, олимпиады и тесты SAT/LSAT.

2. Из этого множества отобрали 1 000 примеров по трем критериям: сложность, разнообразие и качество.

3. Для разметки решений использовались reasoning traces, сгенерированные Gemini Flash Thinking.

4. На этих 1000 примеров зафайнтюнили готовую (даже не базовую, а уже зафайнтюненную предварительно) модель Qwen2.5-32B-Instruct. Для этого понадобилось всего 26 минут на 16 GPU H100 (5 эпох, batch size = 16, AdamW, bfloat16), что в пересчете на аренду железа действительно составляет около 50 долларов. Не мудрено, это всего 32B и 1000 (!) сэмплов.


Это и правда напоминает дистилляцию в том смысле, что базовая модель как бы учится имитировать поведение более мощной модели. Но это не дистилляция в привычном научном смысле слова. Дистилляция – это когда модель-ученик учится предсказывать вероятности выходов учителя, а тут Gemini Flash просто использовали для разметки.

К тому же крутых результатов тут добились не только за счет дообучения, но и за счет тестовой оптимизации. Авторы использовали Budget Forcing, то есть принудительно ограничивали или продлевавали размышления в процессе генерации.

Если число thinking tokens превышало порог – генерация ответа завершалась принудительно. Если требовалось больше вычислений – в конце reasoning trace добавляли слово "Wait", вынуждая модель переосмыслить ответ. Именно это, по словам самих авторов, позволило экстраполировать производительность модели без дополнительного дообучения.

И да, работа очень интересная и значимая, и 50 долларов – реально крутой результат. Но без дорогой взлослой Gemini Flash и дорогой предобученной Qwen2.5-32B-Instruct это не было бы возможно. Так что статья важна скорее с точки зрения прогресса в доступности качественных открытых моделей, а не с точки зрения понижения их стоимости.

https://arxiv.org/pdf/2501.19393
👍141🔥4221❤‍🔥4👌2🦄2😁1🎃1



group-telegram.com/data_secrets/6119
Create:
Last Update:

По сети разлетелась новость о том, что ученые "обучили" модель уровня o1 за 50 долларов

"Скоро ИИ будет дешевле пары носков" – пишут в соцсетях. Почему это не совсем так?

Суть исследования, как написано в самой статье, была в поиске наиболее простого способа повторить результаты сложных моделей с точки зрения test-time скейлинга.

Так что фраза "обучили модель" тут сразу вводит в заслуждение. Да, модель действительно обучали, но важно не за сколько, а как. Многие пишут, что использовалась дистилляция, но и это не совсем корректно. Вот какой подход использовался на самом деле:

1. Авторы собрали 59 029 вопросов из 16 источников, включая соревнования по математике, олимпиады и тесты SAT/LSAT.

2. Из этого множества отобрали 1 000 примеров по трем критериям: сложность, разнообразие и качество.

3. Для разметки решений использовались reasoning traces, сгенерированные Gemini Flash Thinking.

4. На этих 1000 примеров зафайнтюнили готовую (даже не базовую, а уже зафайнтюненную предварительно) модель Qwen2.5-32B-Instruct. Для этого понадобилось всего 26 минут на 16 GPU H100 (5 эпох, batch size = 16, AdamW, bfloat16), что в пересчете на аренду железа действительно составляет около 50 долларов. Не мудрено, это всего 32B и 1000 (!) сэмплов.


Это и правда напоминает дистилляцию в том смысле, что базовая модель как бы учится имитировать поведение более мощной модели. Но это не дистилляция в привычном научном смысле слова. Дистилляция – это когда модель-ученик учится предсказывать вероятности выходов учителя, а тут Gemini Flash просто использовали для разметки.

К тому же крутых результатов тут добились не только за счет дообучения, но и за счет тестовой оптимизации. Авторы использовали Budget Forcing, то есть принудительно ограничивали или продлевавали размышления в процессе генерации.

Если число thinking tokens превышало порог – генерация ответа завершалась принудительно. Если требовалось больше вычислений – в конце reasoning trace добавляли слово "Wait", вынуждая модель переосмыслить ответ. Именно это, по словам самих авторов, позволило экстраполировать производительность модели без дополнительного дообучения.

И да, работа очень интересная и значимая, и 50 долларов – реально крутой результат. Но без дорогой взлослой Gemini Flash и дорогой предобученной Qwen2.5-32B-Instruct это не было бы возможно. Так что статья важна скорее с точки зрения прогресса в доступности качественных открытых моделей, а не с точки зрения понижения их стоимости.

https://arxiv.org/pdf/2501.19393

BY Data Secrets




Share with your friend now:
group-telegram.com/data_secrets/6119

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted. The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations.
from hk


Telegram Data Secrets
FROM American