Изначальная идея неплохая - модель сама предлагает задачи для дообучения SFT и сама на них учится. Генерится три типа задач: deduction (модели дают питоновский код и input в него, просят придумать output; abduction (модели дают питоновский код и output, просят придумать подходящий input); induction (модели дают input и output, просят придумать подходящий код).
Уверяют, что если взять Qwen2.5-7B и Qwen2.5-7B-Coder и дотренировать их с таким подходом, качество заметно вырастет.
У меня есть несколько сомнений: • Промпты для моделей в сумме занимают строк 300. Вопрос: если бы авторы не генерили синтетику и дотренировывали модели, а просто делали инференс модели со схожими промптами - была бы заметная разница или нет? • Некоторые примеры в статье содержат ошибки (см на скриншоте). Модель выдала правильный ответ, но рассуждения неправильные. • В одном месте они утверждают, что модель "became aware", но без деталей того, что именно было подано модели на вход, обсуждать это несерьёзно.
В целом подход интересный и потенциально перспективный. Но слишком уж мутно описано.
Изначальная идея неплохая - модель сама предлагает задачи для дообучения SFT и сама на них учится. Генерится три типа задач: deduction (модели дают питоновский код и input в него, просят придумать output; abduction (модели дают питоновский код и output, просят придумать подходящий input); induction (модели дают input и output, просят придумать подходящий код).
Уверяют, что если взять Qwen2.5-7B и Qwen2.5-7B-Coder и дотренировать их с таким подходом, качество заметно вырастет.
У меня есть несколько сомнений: • Промпты для моделей в сумме занимают строк 300. Вопрос: если бы авторы не генерили синтетику и дотренировывали модели, а просто делали инференс модели со схожими промптами - была бы заметная разница или нет? • Некоторые примеры в статье содержат ошибки (см на скриншоте). Модель выдала правильный ответ, но рассуждения неправильные. • В одном месте они утверждают, что модель "became aware", но без деталей того, что именно было подано модели на вход, обсуждать это несерьёзно.
В целом подход интересный и потенциально перспективный. Но слишком уж мутно описано.
Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels. Ukrainian forces successfully attacked Russian vehicles in the capital city of Kyiv thanks to a public tip made through the encrypted messaging app Telegram, Ukraine's top law-enforcement agency said on Tuesday. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips.
from hk