Telegram Group & Telegram Channel
Recommender Systems with Generative Retrieval [2023] - наконец-то генеративные рекомендации?

Нечасто пишу сюда про статьи по рекомендациям - обычно в них мало интересного, но иногда мне попадается что-нибудь стоящее.

Итак, часто, если у вас есть мощная рекомендательная модель типа трансформера, то она получает на вход пару (юзер, документ) в каком-нибудь виде и предсказывает таргеты - лайки / покупки / другие. Таким образом, одно применение модели позволяет оценить качество одного кандидата.

Такую штуку нельзя прогнать для каждого документа в базе, и поэтому существуют предыдущие стадии ранжирования, работающие более тупым образом - например, у нас есть вектор пользователя, и мы пытаемся быстро найти несколько тысяч ближайших к нему документов-соседей.

Но к этому можно подойти и с другой стороны. Пусть каждый документ представлен вектором. Может ли какая-нибудь мощная модель гененировать вектор? Напрямую делать это нельзя - mse-лоссы вроде как плохо работают в таком сетапе.

В статье предлагают перейти к трансформерному декодеру. Чтобы дискретизовать эмбеддинги, нужно обучить что-то типа VQ-VAE, который умеет превращать эмбеддинг в небольшую последовательность дискретных чисел. Таким образом, данные становятся похожими на язык.

Вкратце о VQ-VAE - вместо того, чтобы обучать скрытое представление малой размерности, мы обучаем N эмбеддингов - сodebook. Получая входной вектор, мы находим ближайший к нему в таблице, его индекс и будет скрытым представлением. Декодированием будет просто взятие нужного вектора из сodebook. Это всё, конечно, недифференцируемо, но на такой случай есть старый добрый метод - забить хер и использовать Straight Through Estimator.

В статье используют RQ-VAE - много codebook-ов, после каждого из которых мы вычитаем из входа ближайший вектор из codebook-а и затем подаём в следующий. Таким образом, каждый айтем они кодируют набором из K чисел. Утверждается, что проблемы с декодированием набора чисел в номер документа несущественны.

Также там сравнивают с более простым методом дискретизации эмбеддингов. Согласно нему, мы проводим случайные гиперплоскости в пространстве эмбеддингов и записываем, с какой стороны от каждой из них оказался айтем. Получившиеся N бит - это и есть новый номер айтема. Метод в 100 раз проще, но по результатам хуже.

У нас с коллегами возникли вопросы по применению всей этой системы в реальном мире. Главный из них - что делать, если векторные представления айтемов меняются со временем? Переобучая / дообучая RQ-VAE на ходу, нам нужно пересоздавать все дискретные представления айтемов, и каждый раз заново перестраивать весь датасет. А это фу.

Лично я пока не решусь ставить на этот подход и заниматься внедрением у себя, однако, направление генеративных рекомендаций могут оказаться перспективными в долгосрочной перспективе.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/235
Create:
Last Update:

Recommender Systems with Generative Retrieval [2023] - наконец-то генеративные рекомендации?

Нечасто пишу сюда про статьи по рекомендациям - обычно в них мало интересного, но иногда мне попадается что-нибудь стоящее.

Итак, часто, если у вас есть мощная рекомендательная модель типа трансформера, то она получает на вход пару (юзер, документ) в каком-нибудь виде и предсказывает таргеты - лайки / покупки / другие. Таким образом, одно применение модели позволяет оценить качество одного кандидата.

Такую штуку нельзя прогнать для каждого документа в базе, и поэтому существуют предыдущие стадии ранжирования, работающие более тупым образом - например, у нас есть вектор пользователя, и мы пытаемся быстро найти несколько тысяч ближайших к нему документов-соседей.

Но к этому можно подойти и с другой стороны. Пусть каждый документ представлен вектором. Может ли какая-нибудь мощная модель гененировать вектор? Напрямую делать это нельзя - mse-лоссы вроде как плохо работают в таком сетапе.

В статье предлагают перейти к трансформерному декодеру. Чтобы дискретизовать эмбеддинги, нужно обучить что-то типа VQ-VAE, который умеет превращать эмбеддинг в небольшую последовательность дискретных чисел. Таким образом, данные становятся похожими на язык.

Вкратце о VQ-VAE - вместо того, чтобы обучать скрытое представление малой размерности, мы обучаем N эмбеддингов - сodebook. Получая входной вектор, мы находим ближайший к нему в таблице, его индекс и будет скрытым представлением. Декодированием будет просто взятие нужного вектора из сodebook. Это всё, конечно, недифференцируемо, но на такой случай есть старый добрый метод - забить хер и использовать Straight Through Estimator.

В статье используют RQ-VAE - много codebook-ов, после каждого из которых мы вычитаем из входа ближайший вектор из codebook-а и затем подаём в следующий. Таким образом, каждый айтем они кодируют набором из K чисел. Утверждается, что проблемы с декодированием набора чисел в номер документа несущественны.

Также там сравнивают с более простым методом дискретизации эмбеддингов. Согласно нему, мы проводим случайные гиперплоскости в пространстве эмбеддингов и записываем, с какой стороны от каждой из них оказался айтем. Получившиеся N бит - это и есть новый номер айтема. Метод в 100 раз проще, но по результатам хуже.

У нас с коллегами возникли вопросы по применению всей этой системы в реальном мире. Главный из них - что делать, если векторные представления айтемов меняются со временем? Переобучая / дообучая RQ-VAE на ходу, нам нужно пересоздавать все дискретные представления айтемов, и каждый раз заново перестраивать весь датасет. А это фу.

Лично я пока не решусь ставить на этот подход и заниматься внедрением у себя, однако, направление генеративных рекомендаций могут оказаться перспективными в долгосрочной перспективе.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/235

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation."
from hk


Telegram Knowledge Accumulator
FROM American