Telegram Group & Telegram Channel
Заблуждение о токенизации и обработке текста

Одним из наиболее распространенных и важных для понимания заблуждений является представление о том, что LLM обрабатывают текст на уровне отдельных букв или символов. Карпати объясняет, что современные языковые модели работают с токенами - фрагментами текста, которые могут представлять части слов, целые слова или даже фразы. Этот процесс токенизации создает словарь из десятков тысяч токенов. Токен при этом состоит не из букв в человеческом понимании. Токен - это набор цифр в таком виде [302, 1618, 19772] (так LLM видит слово strawberry).

Токенизация является корнем многих ограничений LLM, которые пользователи ошибочно приписывают архитектуре или алгоритмам обучения. Классический пример, который приводит Карпати - неспособность модели правильно подсчитать количество букв "r" в слове "strawberry". Поскольку слово может быть токенизировано как "st" + raw" +"berry", модель не имеет прямого доступа к отдельным символам, потому что видит его так [302, 1618, 19772]. Это объясняет, почему мощные языковые модели могут решать сложные математические задачи, но испытывают трудности с простым подсчетом символов.

В экспериментаторской есть раздел с объяснением понятия токен и калькулятор для подсчета количество токенов в тексте:
экспериментаторская.рф/tiktoken
Можете поиграться с этим на досуге.

Это серия постов с заблуждениями об ЛЛМ. Предыдущий здесь.

LawCoder



group-telegram.com/law_coder/195
Create:
Last Update:

Заблуждение о токенизации и обработке текста

Одним из наиболее распространенных и важных для понимания заблуждений является представление о том, что LLM обрабатывают текст на уровне отдельных букв или символов. Карпати объясняет, что современные языковые модели работают с токенами - фрагментами текста, которые могут представлять части слов, целые слова или даже фразы. Этот процесс токенизации создает словарь из десятков тысяч токенов. Токен при этом состоит не из букв в человеческом понимании. Токен - это набор цифр в таком виде [302, 1618, 19772] (так LLM видит слово strawberry).

Токенизация является корнем многих ограничений LLM, которые пользователи ошибочно приписывают архитектуре или алгоритмам обучения. Классический пример, который приводит Карпати - неспособность модели правильно подсчитать количество букв "r" в слове "strawberry". Поскольку слово может быть токенизировано как "st" + raw" +"berry", модель не имеет прямого доступа к отдельным символам, потому что видит его так [302, 1618, 19772]. Это объясняет, почему мощные языковые модели могут решать сложные математические задачи, но испытывают трудности с простым подсчетом символов.

В экспериментаторской есть раздел с объяснением понятия токен и калькулятор для подсчета количество токенов в тексте:
экспериментаторская.рф/tiktoken
Можете поиграться с этим на досуге.

Это серия постов с заблуждениями об ЛЛМ. Предыдущий здесь.

LawCoder

BY LawCoder


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/law_coder/195

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies.
from hk


Telegram LawCoder
FROM American