Telegram Group & Telegram Channel
Constitutional AI: Harmlessness from AI Feedback
Bai et al., Anthropic, 2022
Статья, memo

Одна из статей, входящих в обязательное чтение на курсе про Alignment – классическая уже, наверное, статья от Anthropic про Constitutional AI. Как правило, чтобы LLM давала хорошие ответы, которые всем нравятся и удовлетворяют некоторым принципам, типа helpful, honest and harmless (3H), ее после стадии инструктивного файнтюнинга обучают на данных о предпочтениях людей. На этом этапе обычно (его в англоязычной литературе называют alignment) используют RLHF – обучение с подкреплением на базе фидбека от людей. Строго говоря, процесс не обязательно подразумевает RL (см. DPO) и даже не обязательно подразумевает HF – о чем и идет речь в статье – а под «предпочтениями» подразумевается не искреннее мнение разметчиков, а сравнение нескольких ответов согласно определенным гайдлайнам. На данных о предпочтениях обучают специальную прокси-модель, которая уже и становится источником real-value-фидбека (reward) для обучаемой нами модели (ее в RL называют policy, ну просто чтобы вам тяжелее было читать), и мы будем обучать policy, чтобы максимизировать reward. Учитывая, что человеческая разметка – это дорого, долго и часто еще и очень шумно – что, если заменить человека на другую модель? Так вместо RLHF у нас появляется RLAIF на базе «конституции» - набора принципов в гайдлайнах, по которым модель проводит оценку генераций.



group-telegram.com/llmsecurity/359
Create:
Last Update:

Constitutional AI: Harmlessness from AI Feedback
Bai et al., Anthropic, 2022
Статья, memo

Одна из статей, входящих в обязательное чтение на курсе про Alignment – классическая уже, наверное, статья от Anthropic про Constitutional AI. Как правило, чтобы LLM давала хорошие ответы, которые всем нравятся и удовлетворяют некоторым принципам, типа helpful, honest and harmless (3H), ее после стадии инструктивного файнтюнинга обучают на данных о предпочтениях людей. На этом этапе обычно (его в англоязычной литературе называют alignment) используют RLHF – обучение с подкреплением на базе фидбека от людей. Строго говоря, процесс не обязательно подразумевает RL (см. DPO) и даже не обязательно подразумевает HF – о чем и идет речь в статье – а под «предпочтениями» подразумевается не искреннее мнение разметчиков, а сравнение нескольких ответов согласно определенным гайдлайнам. На данных о предпочтениях обучают специальную прокси-модель, которая уже и становится источником real-value-фидбека (reward) для обучаемой нами модели (ее в RL называют policy, ну просто чтобы вам тяжелее было читать), и мы будем обучать policy, чтобы максимизировать reward. Учитывая, что человеческая разметка – это дорого, долго и часто еще и очень шумно – что, если заменить человека на другую модель? Так вместо RLHF у нас появляется RLAIF на базе «конституции» - набора принципов в гайдлайнах, по которым модель проводит оценку генераций.

BY llm security и каланы




Share with your friend now:
group-telegram.com/llmsecurity/359

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion. Founder Pavel Durov says tech is meant to set you free False news often spreads via public groups, or chats, with potentially fatal effects. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips.
from hk


Telegram llm security и каланы
FROM American