Telegram Group & Telegram Channel
آنچه بنجیو در خشت خام می‌بیند

یاشوا بنجیو که (انصافا) یکی از خدایگان هوش مصنوعی و دیپ لرنینگ است، از یکی دو سال پیش به تدریج در تاک‌های مختلف (مثلا اینجا و اینجا و اینجا و اینجا) ایده‌های خود برای پیشرفت‌ آینده هوش مصنوعی را شرح داده است. ایده‌های او بر بناکردن inductive biasهای جدیدی (به طور خیلی خلاصه و مفید inductive bias همان فرضیاتی که یک الگوریتم یادگیری قبل از حل مساله در مورد آن در نظر می‌گیرد و راه حلش روی آن فرض بنا شده است، برای مثال وقتی ما فرض می‌کنیم که معنای یک تیکه از تصویر می‌تواند از تیکه‌های مجاورش دریافت شود این فرض ما منجر به بناشدن شبکه‌های cnnای می‌شود) برای دیپ لرنینگ حول کلیدواژه مهم out of distribution generalization (تا الان بدین شکل بوده که مدل ما یک توزیع از داده‌های آموزشی در می‌آورده و نهایتا با کمی تغییر دنبال این توزیع در داده‌های تست بوده است. اما شیخ ما اعتقاد دارد بایستی از این به بعد تغییرات گسترده در داده‌های تست نسبت به توزیع داده‌های آموزش را هم بتواند تحمل کند. مثلا باید یادگرفتن را یادبگیرد تا اگر توزیع محیطش تغییری هم کرد بتواند خودش را با آن وفق دهد!) بنا شده است.
به طور مختصر و مفید؛ پیر ما معتقد است که تسک‌هایی را که مغز انسان انجام می‌دهد می‌توان به دسته سیستم ۱ و سیستم ۲ تقسیم ‌بندی کرد. تسک‌های سیستم ۱ مسائلی هستند که به صورت ناخودآگاه و البته سریع و بدون نیاز به تفکر قابل انجام توسط مغز هستند مثلا تشخیص خر از پنگوئن، تشخیص ناسزا از غیرناسزا و ... ، حال ان که تسک‌های سیستم ۲ بایستی با توجه و برنامه‌ریزی و البته آگاهانه انجام شوند مثلا رانندگی کردن.
بنجیو می‌گوید که توانایی فعلی دیپ لرنینگ در انجام دادن تسک‌های سیستم ۱ است و در سیستم ۲ توفیقی هنوز ندارد. در ادامه بنجیو پیشنهاد می‌دهد که آینده هوش مصنوعی درگیر با انجام تسک‌های سیستم ۲ و همچنین همان کلیدواژه out of distribution generalization خواهد بود.

بر اساس همین ایده اولیه، بنجیو تعدادی ایده برای الهام‌گیری و شکستن بن‌بست فعلی پیشرفت دیپ لرنینگ پیشنهاد می‌کند که از آن‌ها می‌توان به بررسی مسائل multi agent، خلق شبکه‌های عصبی با ویژگی ماژولاریزیشن نظیر RIMها، دیدن مسائل از زاویه گراف‌های علی (causal) متغیر‌ها، متالرنینگ و ... اشاره کرد.

لینک مقاله‌‌اش:

https://arxiv.org/pdf/2011.15091.pdf

پ.ن. لطفا کانال را به کسایی که هوش مصنوعی دوست دارند، معرفی کنید! ممنون.

#paper
#read

@nlp_stuff



group-telegram.com/nlp_stuff/127
Create:
Last Update:

آنچه بنجیو در خشت خام می‌بیند

یاشوا بنجیو که (انصافا) یکی از خدایگان هوش مصنوعی و دیپ لرنینگ است، از یکی دو سال پیش به تدریج در تاک‌های مختلف (مثلا اینجا و اینجا و اینجا و اینجا) ایده‌های خود برای پیشرفت‌ آینده هوش مصنوعی را شرح داده است. ایده‌های او بر بناکردن inductive biasهای جدیدی (به طور خیلی خلاصه و مفید inductive bias همان فرضیاتی که یک الگوریتم یادگیری قبل از حل مساله در مورد آن در نظر می‌گیرد و راه حلش روی آن فرض بنا شده است، برای مثال وقتی ما فرض می‌کنیم که معنای یک تیکه از تصویر می‌تواند از تیکه‌های مجاورش دریافت شود این فرض ما منجر به بناشدن شبکه‌های cnnای می‌شود) برای دیپ لرنینگ حول کلیدواژه مهم out of distribution generalization (تا الان بدین شکل بوده که مدل ما یک توزیع از داده‌های آموزشی در می‌آورده و نهایتا با کمی تغییر دنبال این توزیع در داده‌های تست بوده است. اما شیخ ما اعتقاد دارد بایستی از این به بعد تغییرات گسترده در داده‌های تست نسبت به توزیع داده‌های آموزش را هم بتواند تحمل کند. مثلا باید یادگرفتن را یادبگیرد تا اگر توزیع محیطش تغییری هم کرد بتواند خودش را با آن وفق دهد!) بنا شده است.
به طور مختصر و مفید؛ پیر ما معتقد است که تسک‌هایی را که مغز انسان انجام می‌دهد می‌توان به دسته سیستم ۱ و سیستم ۲ تقسیم ‌بندی کرد. تسک‌های سیستم ۱ مسائلی هستند که به صورت ناخودآگاه و البته سریع و بدون نیاز به تفکر قابل انجام توسط مغز هستند مثلا تشخیص خر از پنگوئن، تشخیص ناسزا از غیرناسزا و ... ، حال ان که تسک‌های سیستم ۲ بایستی با توجه و برنامه‌ریزی و البته آگاهانه انجام شوند مثلا رانندگی کردن.
بنجیو می‌گوید که توانایی فعلی دیپ لرنینگ در انجام دادن تسک‌های سیستم ۱ است و در سیستم ۲ توفیقی هنوز ندارد. در ادامه بنجیو پیشنهاد می‌دهد که آینده هوش مصنوعی درگیر با انجام تسک‌های سیستم ۲ و همچنین همان کلیدواژه out of distribution generalization خواهد بود.

بر اساس همین ایده اولیه، بنجیو تعدادی ایده برای الهام‌گیری و شکستن بن‌بست فعلی پیشرفت دیپ لرنینگ پیشنهاد می‌کند که از آن‌ها می‌توان به بررسی مسائل multi agent، خلق شبکه‌های عصبی با ویژگی ماژولاریزیشن نظیر RIMها، دیدن مسائل از زاویه گراف‌های علی (causal) متغیر‌ها، متالرنینگ و ... اشاره کرد.

لینک مقاله‌‌اش:

https://arxiv.org/pdf/2011.15091.pdf

پ.ن. لطفا کانال را به کسایی که هوش مصنوعی دوست دارند، معرفی کنید! ممنون.

#paper
#read

@nlp_stuff

BY NLP stuff




Share with your friend now:
group-telegram.com/nlp_stuff/127

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands.
from hk


Telegram NLP stuff
FROM American