Telegram Group & Telegram Channel
Применил на работе прием, который считал общеизвестным, но, судя по реакции коллег, это не совсем так. Потому расскажу и здесь!

Предположим, для какой-то ML задачи нужна ручная разметка данных, и расходы сколько-то заметны💰 (а значит, в 2023 их наверняка предложат урезать 🔪). В такой ситуации хочется хотя бы приблизительно понимать, как эти инвестиции в разметку окупаются.

Мое сколько-то наивное решение такое:
- делим тренировочный датасет на бакеты так, минимизируя разницу размеров бакетов и некоторое сходство между семплами разных бакетов (например, все семплы одного пользователя попадают в один бакет, который определяется на базе хэша его id);
- фиксируем вычислительный бюджет (вне зависимости от размера датасета учимся на N батчей);
- учим модель на сабсетах в диапазоне от малой части датасета до целого датасета, обеспечивая кумулятивного увеличение датасета (например, если некий семпл X был в обучении на 10% сабсете, то он обязательно будет и в обучении на 20% датасета);
- для каждой обученной модели смотрим ключевую метрику и рисуем график: по оси X - размер датасета, по оси Y - улучшение метрики;
- включаем воображение и оцениваем с точностью до порядка, сколько данных нужно досыпать, чтобы выжать следующий 1% метрики.

Точность такой экстраполяции оставляет желать лучшего (например, совершенно не учитывает штуки типа concept drift), но она значительно лучше, чем "хер его знает!", и сильно упрощает принятие решений типа "что выгоднее: отправить джуна подбирать гиперпараметры или нанять десять разметчиков и дальше заваливать модель данными".



group-telegram.com/partially_unsupervised/184
Create:
Last Update:

Применил на работе прием, который считал общеизвестным, но, судя по реакции коллег, это не совсем так. Потому расскажу и здесь!

Предположим, для какой-то ML задачи нужна ручная разметка данных, и расходы сколько-то заметны💰 (а значит, в 2023 их наверняка предложат урезать 🔪). В такой ситуации хочется хотя бы приблизительно понимать, как эти инвестиции в разметку окупаются.

Мое сколько-то наивное решение такое:
- делим тренировочный датасет на бакеты так, минимизируя разницу размеров бакетов и некоторое сходство между семплами разных бакетов (например, все семплы одного пользователя попадают в один бакет, который определяется на базе хэша его id);
- фиксируем вычислительный бюджет (вне зависимости от размера датасета учимся на N батчей);
- учим модель на сабсетах в диапазоне от малой части датасета до целого датасета, обеспечивая кумулятивного увеличение датасета (например, если некий семпл X был в обучении на 10% сабсете, то он обязательно будет и в обучении на 20% датасета);
- для каждой обученной модели смотрим ключевую метрику и рисуем график: по оси X - размер датасета, по оси Y - улучшение метрики;
- включаем воображение и оцениваем с точностью до порядка, сколько данных нужно досыпать, чтобы выжать следующий 1% метрики.

Точность такой экстраполяции оставляет желать лучшего (например, совершенно не учитывает штуки типа concept drift), но она значительно лучше, чем "хер его знает!", и сильно упрощает принятие решений типа "что выгоднее: отправить джуна подбирать гиперпараметры или нанять десять разметчиков и дальше заваливать модель данными".

BY partially unsupervised


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/partially_unsupervised/184

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world." In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war.
from hk


Telegram partially unsupervised
FROM American