Telegram Group & Telegram Channel
Вышла статья про DALL-E 3

Суть в том, что модели вроде Stable Diffusion, Midjourney и далее по списку часто игнорируют слова в промптах. Вызвано это тем, что они обучались на датасетах из пар <картинка, текст>, где текст зачастую брался из HTML-тега alt text. А как мы знаем, далеко не всегда alt text заполняется качественно. А даже если и заполняется, обычно там есть только краткое описание без деталей про фон, свет, текстуру и тд, которые так важны для контроля генерации.

Авторы обучили “некоторую LLM” генерировать текстовые описания к картинкам. Для этого они использовали CLIP-эмбединги картинок и текстовые описания из интернета. Далее они затюнили LLM на небольшом датасете из хороших, очень детальных описаний картинок.

С помощью полученной LLM авторы разметили новый датасет из пар <картинка, текст>, где 95% текстов были сгенерированы, а оставшиеся 5% состояли из alt text для регуляризации. На этом датасете и обучали DALL-E 3. Качество в процессе измеряли с помощью новой метрики CLIP-S.

На инференсе, чтобы не выбиваться из распределения длинных, детализированных промптов, ваш входной промпт “апскейлят” с помощью GPT-4. Условно, вы пишите “кот в сапогах”, а DALL-E 3 на вход получит “кот в слегка потертых сапогах из коричневой кожи, очень детализированный мех, студийное освещение, монохромный фон”.

Про архитектуру самой модели и процесс обучения информации почти нет.

Статья



group-telegram.com/savostyanov_dmitry/436
Create:
Last Update:

Вышла статья про DALL-E 3

Суть в том, что модели вроде Stable Diffusion, Midjourney и далее по списку часто игнорируют слова в промптах. Вызвано это тем, что они обучались на датасетах из пар <картинка, текст>, где текст зачастую брался из HTML-тега alt text. А как мы знаем, далеко не всегда alt text заполняется качественно. А даже если и заполняется, обычно там есть только краткое описание без деталей про фон, свет, текстуру и тд, которые так важны для контроля генерации.

Авторы обучили “некоторую LLM” генерировать текстовые описания к картинкам. Для этого они использовали CLIP-эмбединги картинок и текстовые описания из интернета. Далее они затюнили LLM на небольшом датасете из хороших, очень детальных описаний картинок.

С помощью полученной LLM авторы разметили новый датасет из пар <картинка, текст>, где 95% текстов были сгенерированы, а оставшиеся 5% состояли из alt text для регуляризации. На этом датасете и обучали DALL-E 3. Качество в процессе измеряли с помощью новой метрики CLIP-S.

На инференсе, чтобы не выбиваться из распределения длинных, детализированных промптов, ваш входной промпт “апскейлят” с помощью GPT-4. Условно, вы пишите “кот в сапогах”, а DALL-E 3 на вход получит “кот в слегка потертых сапогах из коричневой кожи, очень детализированный мех, студийное освещение, монохромный фон”.

Про архитектуру самой модели и процесс обучения информации почти нет.

Статья

BY Дмитрий Савостьянов Вещает


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/savostyanov_dmitry/436

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. The Dow Jones Industrial Average fell 230 points, or 0.7%. Meanwhile, the S&P 500 and the Nasdaq Composite dropped 1.3% and 2.2%, respectively. All three indexes began the day with gains before selling off. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment.
from hk


Telegram Дмитрий Савостьянов Вещает
FROM American