Telegram Group & Telegram Channel
ИИ для социальных исследований: новые подходы к качественным и количественным методам

В статье "Generative AI for Social Research: Going Native with Artificial Intelligence", опубликованной в Sociologica, Pilati, Munk и Venturini представляют обзор новых способов применения генеративного ИИ в социальных науках. Авторы не ограничиваются описанием возможностей, а акцентируют внимание на методологических аспектах, подчеркивая сближение качественных и количественных методов и переход к "нативно-цифровым" подходам.

Статья рассматривает два основных направления использования генеративного ИИ в социальных исследованиях:

Сглаживание границы между качественными и количественными методами: LLM (большие языковые модели) демонстрируют эффективность как в качественных задачах (чистка данных, аннотация, анализ нарративов), так и в количественных (создание опросников, анализ статистических моделей). Это разрушает традиционное разделение методов и открывает новые возможности для исследователей.

Переход к "нативно-цифровым" методам: Авторы призывают к использованию ИИ не просто как инструмента для обработки существующих данных, но и как метода генерации новых данных и анализа цифровых инфраструктур. Это предполагает более глубокое понимание того, как ИИ "видит" мир и как его модели отражают культурные и социальные контексты.

Примеры использования генеративного ИИ:

Качественные исследования: LLM используются для очистки транскрипций интервью, аннотации данных, обнаружения сюжетов в литературных текстах, проведения полуструктурированных интервью и анализа мультимодальных данных.

Количественные исследования: LLM применяются для создания адаптивных опросников, улучшения точности статистических моделей и автоматизации рутинных задач.

Анализ культурных и социальных контекстов: Исследования фокусируются на выявлении культурных предвзятостей LLM, сравнении их ответов с ответами людей из разных культурных групп и анализе внутренних механизмов работы моделей.

Статья призывает к осмысленному использованию генеративного ИИ в социальных исследованиях, подчеркивая необходимость развития новых методологических подходов и критического анализа результатов. Авторы предлагают рассматривать ИИ не только как инструмент, но и как объект исследования, что позволит глубоко понять его возможности и ограничения. Дальнейшие исследования в этом направлении обещают значительный прогресс в социальных науках.



group-telegram.com/selfmadeLibrary/855
Create:
Last Update:

ИИ для социальных исследований: новые подходы к качественным и количественным методам

В статье "Generative AI for Social Research: Going Native with Artificial Intelligence", опубликованной в Sociologica, Pilati, Munk и Venturini представляют обзор новых способов применения генеративного ИИ в социальных науках. Авторы не ограничиваются описанием возможностей, а акцентируют внимание на методологических аспектах, подчеркивая сближение качественных и количественных методов и переход к "нативно-цифровым" подходам.

Статья рассматривает два основных направления использования генеративного ИИ в социальных исследованиях:

Сглаживание границы между качественными и количественными методами: LLM (большие языковые модели) демонстрируют эффективность как в качественных задачах (чистка данных, аннотация, анализ нарративов), так и в количественных (создание опросников, анализ статистических моделей). Это разрушает традиционное разделение методов и открывает новые возможности для исследователей.

Переход к "нативно-цифровым" методам: Авторы призывают к использованию ИИ не просто как инструмента для обработки существующих данных, но и как метода генерации новых данных и анализа цифровых инфраструктур. Это предполагает более глубокое понимание того, как ИИ "видит" мир и как его модели отражают культурные и социальные контексты.

Примеры использования генеративного ИИ:

Качественные исследования: LLM используются для очистки транскрипций интервью, аннотации данных, обнаружения сюжетов в литературных текстах, проведения полуструктурированных интервью и анализа мультимодальных данных.

Количественные исследования: LLM применяются для создания адаптивных опросников, улучшения точности статистических моделей и автоматизации рутинных задач.

Анализ культурных и социальных контекстов: Исследования фокусируются на выявлении культурных предвзятостей LLM, сравнении их ответов с ответами людей из разных культурных групп и анализе внутренних механизмов работы моделей.

Статья призывает к осмысленному использованию генеративного ИИ в социальных исследованиях, подчеркивая необходимость развития новых методологических подходов и критического анализа результатов. Авторы предлагают рассматривать ИИ не только как инструмент, но и как объект исследования, что позволит глубоко понять его возможности и ограничения. Дальнейшие исследования в этом направлении обещают значительный прогресс в социальных науках.

BY какая-то библиотека


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/selfmadeLibrary/855

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Anastasia Vlasova/Getty Images Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%.
from hk


Telegram какая-то библиотека
FROM American