Telegram Group & Telegram Channel
По сети разлетелась новость о том, что ученые "обучили" модель уровня o1 за 50 долларов

"Скоро ИИ будет дешевле пары носков" – пишут в соцсетях. Почему это не совсем так?

Суть исследования, как написано в самой статье, была в поиске наиболее простого способа повторить результаты сложных моделей с точки зрения test-time скейлинга.

Так что фраза "обучили модель" тут сразу вводит в заслуждение. Да, модель действительно обучали, но важно не за сколько, а как. Многие пишут, что использовалась дистилляция, но и это не совсем корректно. Вот какой подход использовался на самом деле:

1. Авторы собрали 59 029 вопросов из 16 источников, включая соревнования по математике, олимпиады и тесты SAT/LSAT.

2. Из этого множества отобрали 1 000 примеров по трем критериям: сложность, разнообразие и качество.

3. Для разметки решений использовались reasoning traces, сгенерированные Gemini Flash Thinking.

4. На этих 1000 примеров зафайнтюнили готовую (даже не базовую, а уже зафайнтюненную предварительно) модель Qwen2.5-32B-Instruct. Для этого понадобилось всего 26 минут на 16 GPU H100 (5 эпох, batch size = 16, AdamW, bfloat16), что в пересчете на аренду железа действительно составляет около 50 долларов. Не мудрено, это всего 32B и 1000 (!) сэмплов.


Это и правда напоминает дистилляцию в том смысле, что базовая модель как бы учится имитировать поведение более мощной модели. Но это не дистилляция в привычном научном смысле слова. Дистилляция – это когда модель-ученик учится предсказывать вероятности выходов учителя, а тут Gemini Flash просто использовали для разметки.

К тому же крутых результатов тут добились не только за счет дообучения, но и за счет тестовой оптимизации. Авторы использовали Budget Forcing, то есть принудительно ограничивали или продлевавали размышления в процессе генерации.

Если число thinking tokens превышало порог – генерация ответа завершалась принудительно. Если требовалось больше вычислений – в конце reasoning trace добавляли слово "Wait", вынуждая модель переосмыслить ответ. Именно это, по словам самих авторов, позволило экстраполировать производительность модели без дополнительного дообучения.

И да, работа очень интересная и значимая, и 50 долларов – реально крутой результат. Но без дорогой взлослой Gemini Flash и дорогой предобученной Qwen2.5-32B-Instruct это не было бы возможно. Так что статья важна скорее с точки зрения прогресса в доступности качественных открытых моделей, а не с точки зрения понижения их стоимости.

https://arxiv.org/pdf/2501.19393
👍141🔥4221❤‍🔥4👌2🦄2😁1🎃1



group-telegram.com/data_secrets/6119
Create:
Last Update:

По сети разлетелась новость о том, что ученые "обучили" модель уровня o1 за 50 долларов

"Скоро ИИ будет дешевле пары носков" – пишут в соцсетях. Почему это не совсем так?

Суть исследования, как написано в самой статье, была в поиске наиболее простого способа повторить результаты сложных моделей с точки зрения test-time скейлинга.

Так что фраза "обучили модель" тут сразу вводит в заслуждение. Да, модель действительно обучали, но важно не за сколько, а как. Многие пишут, что использовалась дистилляция, но и это не совсем корректно. Вот какой подход использовался на самом деле:

1. Авторы собрали 59 029 вопросов из 16 источников, включая соревнования по математике, олимпиады и тесты SAT/LSAT.

2. Из этого множества отобрали 1 000 примеров по трем критериям: сложность, разнообразие и качество.

3. Для разметки решений использовались reasoning traces, сгенерированные Gemini Flash Thinking.

4. На этих 1000 примеров зафайнтюнили готовую (даже не базовую, а уже зафайнтюненную предварительно) модель Qwen2.5-32B-Instruct. Для этого понадобилось всего 26 минут на 16 GPU H100 (5 эпох, batch size = 16, AdamW, bfloat16), что в пересчете на аренду железа действительно составляет около 50 долларов. Не мудрено, это всего 32B и 1000 (!) сэмплов.


Это и правда напоминает дистилляцию в том смысле, что базовая модель как бы учится имитировать поведение более мощной модели. Но это не дистилляция в привычном научном смысле слова. Дистилляция – это когда модель-ученик учится предсказывать вероятности выходов учителя, а тут Gemini Flash просто использовали для разметки.

К тому же крутых результатов тут добились не только за счет дообучения, но и за счет тестовой оптимизации. Авторы использовали Budget Forcing, то есть принудительно ограничивали или продлевавали размышления в процессе генерации.

Если число thinking tokens превышало порог – генерация ответа завершалась принудительно. Если требовалось больше вычислений – в конце reasoning trace добавляли слово "Wait", вынуждая модель переосмыслить ответ. Именно это, по словам самих авторов, позволило экстраполировать производительность модели без дополнительного дообучения.

И да, работа очень интересная и значимая, и 50 долларов – реально крутой результат. Но без дорогой взлослой Gemini Flash и дорогой предобученной Qwen2.5-32B-Instruct это не было бы возможно. Так что статья важна скорее с точки зрения прогресса в доступности качественных открытых моделей, а не с точки зрения понижения их стоимости.

https://arxiv.org/pdf/2501.19393

BY Data Secrets




Share with your friend now:
group-telegram.com/data_secrets/6119

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively.
from id


Telegram Data Secrets
FROM American