Telegram Group & Telegram Channel
Один мой знакомый продуктовый аналитик при каждой нашей встрече ворчит: “геймдев — это какая-то своя реальность”. В чем-то он прав, пожалуй. Своя атмосфера и в данных, и в фокусах анализа, и в подходе к интерпретации.

Вот небольшой пример. Изучаю факторы отвала на третий день — сравниваю, как играют те, кто отвалился раньше и те, кто все-таки вернулся. Интересно, чем различается игровой опыт этих групп пользователей, так как это как раз может быть причиной отвала.

Вижу, что у отвалившихся пользователей выше винрейт и KDA. Вопрос, можно ли утверждать (при прочих равных), что пользователям слишком легко играть, нет челленджа и они отваливаются?

Самый правильный ответ тут — недостаточно данных. Но в большинстве случаев вывод про отсутствие челленджа будет все же неверен. В данном случае от нас скрыта еще одна переменная — сколько боев сыграли те, кто отвалился и кто вернулся, и что это за бои. Обычно отвалившиеся пользователи играют в два-три раза менее активно, чем вернувшиеся. В этом и кроется ключевая ловушка — бои пользователей, особенно в самом начале, неодинаковы (для других жанров единицы будут другими, но смысл тот же). Самые первые бои обычно стараются делать легкими (беззубые и/или понерфленные боты и т. д.) и потом постепенно повышать сложность. Плюс пользователи растут по рейтингу и попадают в котлы к игрокам с более высоким рейтингом и, соответственно, опытом и прокачкой.

В результате пользователи, которые вернулись на третий день, скорее всего отыграли больше боев. И в этих боях они сталкивались уже с более сложными ботами и опытными игроками. Отвалившиеся пользователи ушли на легких боях, и поэтому у них winrate/KDA вполне может выше. Но это никак не говорит о том, что пользователи отвалились из-за того, что им легко и нет челленджа. Для проверки этой гипотезы надо брать тех, кто сыграл, например, ровно 10 боев, и смотреть метрики вернувшихся и отвалившихся по ним.

Собственно, вот эта неоднородность опыта пользователей, которая зависит от внутриигровой прогрессии — одна из ключевых особенностей игровых данных, влияющих на метрики и на подходы к анализу и выводу.

PS. сижу теперь и думаю — кажется, вполне неплохой кейс получился для задачника по продуктовой аналитике или для собесов

#exercises



group-telegram.com/diceanalytics/97
Create:
Last Update:

Один мой знакомый продуктовый аналитик при каждой нашей встрече ворчит: “геймдев — это какая-то своя реальность”. В чем-то он прав, пожалуй. Своя атмосфера и в данных, и в фокусах анализа, и в подходе к интерпретации.

Вот небольшой пример. Изучаю факторы отвала на третий день — сравниваю, как играют те, кто отвалился раньше и те, кто все-таки вернулся. Интересно, чем различается игровой опыт этих групп пользователей, так как это как раз может быть причиной отвала.

Вижу, что у отвалившихся пользователей выше винрейт и KDA. Вопрос, можно ли утверждать (при прочих равных), что пользователям слишком легко играть, нет челленджа и они отваливаются?

Самый правильный ответ тут — недостаточно данных. Но в большинстве случаев вывод про отсутствие челленджа будет все же неверен. В данном случае от нас скрыта еще одна переменная — сколько боев сыграли те, кто отвалился и кто вернулся, и что это за бои. Обычно отвалившиеся пользователи играют в два-три раза менее активно, чем вернувшиеся. В этом и кроется ключевая ловушка — бои пользователей, особенно в самом начале, неодинаковы (для других жанров единицы будут другими, но смысл тот же). Самые первые бои обычно стараются делать легкими (беззубые и/или понерфленные боты и т. д.) и потом постепенно повышать сложность. Плюс пользователи растут по рейтингу и попадают в котлы к игрокам с более высоким рейтингом и, соответственно, опытом и прокачкой.

В результате пользователи, которые вернулись на третий день, скорее всего отыграли больше боев. И в этих боях они сталкивались уже с более сложными ботами и опытными игроками. Отвалившиеся пользователи ушли на легких боях, и поэтому у них winrate/KDA вполне может выше. Но это никак не говорит о том, что пользователи отвалились из-за того, что им легко и нет челленджа. Для проверки этой гипотезы надо брать тех, кто сыграл, например, ровно 10 боев, и смотреть метрики вернувшихся и отвалившихся по ним.

Собственно, вот эта неоднородность опыта пользователей, которая зависит от внутриигровой прогрессии — одна из ключевых особенностей игровых данных, влияющих на метрики и на подходы к анализу и выводу.

PS. сижу теперь и думаю — кажется, вполне неплохой кейс получился для задачника по продуктовой аналитике или для собесов

#exercises

BY аналитика на кубах


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/diceanalytics/97

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices.
from id


Telegram аналитика на кубах
FROM American