Telegram Group & Telegram Channel
Разработка нового alignment в нашей команде подошла к моменту, когда необходимо анализировать внутреннее состояние LLM, поэтому для тех, кто занимается интерпретацией языковых моделей и исследованием их внутреннего состояния в зависимости от промпта, нашел кое-что интересное😽

🥂 Либа TransformerLens - позволяет довольно подробно и с хорошей визуализацией интерпертировать внутреннее состояние LLM. Она поддерживает более 50 опенсурс моделей таких как Llama-3.1-70B-Instruct, Qwen2-7B-Instruct, t5-large, Mixtral-8x7B-v0.1 и другие (полный список тут).

Авторы составили супер подробный гайд в ноутбуке, что очень упрощает вкат в новую либу. Там же вы можете попробовать основные функции TransformerLens:

🔷Извлекать и анализировать внутренние активации модели, что помогает понять, как модель обрабатывает входные данные
🔷С помощью hook points позволяет изменять внутренние активации без изменения структуры модели. Это очень крутая фича, которую мы будем юзать в нашем исследовании - попробуем менять внутреннее состояние LLM, чтобы она на положительный промпт реагировала отрицательно. Так хотим определить зоны, ответственные принятие решений. Чем-то напоминает ЭЭГ мозга👦
🔷Анализировать изменения в модели на различных этапах обучения, включая изучение формирования induction heads - пары attention heads в разных слоях, которые работают вместе для копирования или завершения паттернов attention. Подробнее про них можно прочитать в статье Anthropic

Прям в ноутбуке вы сможете найти очень интересные тонкости, которые не всегда очевидны. Например, трансформеры, как правило, странно относятся к первому токену (BOS) - это, действительно, не имеет значения при обучении модели (когда все входные данные составляют > 1000 токенов), но это может стать большой проблемой с использованием коротких промптов. Вот различие логитов с применением BOS и без него, а также различие токенизации имени:


Logit difference with BOS: 6.754
Logit difference without BOS: 2.782

| Claire| -> [' Claire']
|Claire| -> ['Cl', 'aire']


Когда я проверял различие внутренних состояний gpt-2 в двух промптах ('You have happy emotion in yourself!' и 'You have angry emotion in yourself!') оказалось, что сильное различие токенов эмоций возникает лишь в самых первых слоях трансформера, а к концу оно затухает. Напротив, знак препинания (!) особо сильно выделился только в последнем слое.

🥂В качестве небольшого бонуса - если вам нужны идеи как именно модель интерпретирует каждый токен, то можете обратиться к Neuronpedia. Здесь можно проанализировать поведение модели Gemma-2 и понять как она примерно классифицирует токены полученной информации. Я бы не относил этот инструмент к основным в области рисерча интерпретируемости, но как референс результата почему бы и нет?

P.S.
Если знаете еще какие нибудь классные инструменты интерпретации LLM, делитесь в комментариях
(Transluce не предлагать⌨️)
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/kitty_bytes/28
Create:
Last Update:

Разработка нового alignment в нашей команде подошла к моменту, когда необходимо анализировать внутреннее состояние LLM, поэтому для тех, кто занимается интерпретацией языковых моделей и исследованием их внутреннего состояния в зависимости от промпта, нашел кое-что интересное😽

🥂 Либа TransformerLens - позволяет довольно подробно и с хорошей визуализацией интерпертировать внутреннее состояние LLM. Она поддерживает более 50 опенсурс моделей таких как Llama-3.1-70B-Instruct, Qwen2-7B-Instruct, t5-large, Mixtral-8x7B-v0.1 и другие (полный список тут).

Авторы составили супер подробный гайд в ноутбуке, что очень упрощает вкат в новую либу. Там же вы можете попробовать основные функции TransformerLens:

🔷Извлекать и анализировать внутренние активации модели, что помогает понять, как модель обрабатывает входные данные
🔷С помощью hook points позволяет изменять внутренние активации без изменения структуры модели. Это очень крутая фича, которую мы будем юзать в нашем исследовании - попробуем менять внутреннее состояние LLM, чтобы она на положительный промпт реагировала отрицательно. Так хотим определить зоны, ответственные принятие решений. Чем-то напоминает ЭЭГ мозга👦
🔷Анализировать изменения в модели на различных этапах обучения, включая изучение формирования induction heads - пары attention heads в разных слоях, которые работают вместе для копирования или завершения паттернов attention. Подробнее про них можно прочитать в статье Anthropic

Прям в ноутбуке вы сможете найти очень интересные тонкости, которые не всегда очевидны. Например, трансформеры, как правило, странно относятся к первому токену (BOS) - это, действительно, не имеет значения при обучении модели (когда все входные данные составляют > 1000 токенов), но это может стать большой проблемой с использованием коротких промптов. Вот различие логитов с применением BOS и без него, а также различие токенизации имени:


Logit difference with BOS: 6.754
Logit difference without BOS: 2.782

| Claire| -> [' Claire']
|Claire| -> ['Cl', 'aire']


Когда я проверял различие внутренних состояний gpt-2 в двух промптах ('You have happy emotion in yourself!' и 'You have angry emotion in yourself!') оказалось, что сильное различие токенов эмоций возникает лишь в самых первых слоях трансформера, а к концу оно затухает. Напротив, знак препинания (!) особо сильно выделился только в последнем слое.

🥂В качестве небольшого бонуса - если вам нужны идеи как именно модель интерпретирует каждый токен, то можете обратиться к Neuronpedia. Здесь можно проанализировать поведение модели Gemma-2 и понять как она примерно классифицирует токены полученной информации. Я бы не относил этот инструмент к основным в области рисерча интерпретируемости, но как референс результата почему бы и нет?

P.S.
Если знаете еще какие нибудь классные инструменты интерпретации LLM, делитесь в комментариях
(Transluce не предлагать⌨️)

BY Kitty Bytes AI


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/kitty_bytes/28

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

READ MORE Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp.
from id


Telegram Kitty Bytes AI
FROM American