Telegram Group & Telegram Channel
Для оценки метода исследователи применяют набор стандартных датасетов типа MMLU, HellaSwag, GSM8k и так далее для оценки падения в качестве, а также набор известных атак (GCG, PAIR, AutoDAN, TAP-Transfer), публичные известные джейлбрейки, мультилингвальные джейлбрейки, а также white-box манипуляции с эмбеддингами, направлениями в residual-соединениях и префиллингом. Результаты оцениваются с помощью классификатора из HarmBench. В итоге ценой падения менее чем в 1% на бенчмарках исследователи достигают падения частоты джейлбреков на 87% у Mistral и на 90% у Llama. Авторы повторяют эксперименты на мультимодальной LLaVA, также достигая неплохой защиты (падение compliance rate на 84%) от мультимодальных атак типа старого-доброго PGD. Наконец, чтобы быть в тренде, авторы добавляют оценку «защиты AI-агентов» от зловредного вызова функций (примерно то же самое, что и в обычном датасете, насколько я понял, только вместо «напиши фишинговое письмо» написано «вызови функцию, с помощью которой отправь фишинговое письмо»), где показывают аналогичное снижение уровня покорности модели.

Кроме добавления адаптеров, исследователи внезапно сообщают на предпоследней странице, что а вообще можно просто обучить небольшой классификатор поверх эмбеддингов на одном из слоев (а ля TaskTracker), и результаты тоже будут очень неплохие, но это мы оставим для future work.



group-telegram.com/llmsecurity/429
Create:
Last Update:

Для оценки метода исследователи применяют набор стандартных датасетов типа MMLU, HellaSwag, GSM8k и так далее для оценки падения в качестве, а также набор известных атак (GCG, PAIR, AutoDAN, TAP-Transfer), публичные известные джейлбрейки, мультилингвальные джейлбрейки, а также white-box манипуляции с эмбеддингами, направлениями в residual-соединениях и префиллингом. Результаты оцениваются с помощью классификатора из HarmBench. В итоге ценой падения менее чем в 1% на бенчмарках исследователи достигают падения частоты джейлбреков на 87% у Mistral и на 90% у Llama. Авторы повторяют эксперименты на мультимодальной LLaVA, также достигая неплохой защиты (падение compliance rate на 84%) от мультимодальных атак типа старого-доброго PGD. Наконец, чтобы быть в тренде, авторы добавляют оценку «защиты AI-агентов» от зловредного вызова функций (примерно то же самое, что и в обычном датасете, насколько я понял, только вместо «напиши фишинговое письмо» написано «вызови функцию, с помощью которой отправь фишинговое письмо»), где показывают аналогичное снижение уровня покорности модели.

Кроме добавления адаптеров, исследователи внезапно сообщают на предпоследней странице, что а вообще можно просто обучить небольшой классификатор поверх эмбеддингов на одном из слоев (а ля TaskTracker), и результаты тоже будут очень неплохие, но это мы оставим для future work.

BY llm security и каланы









Share with your friend now:
group-telegram.com/llmsecurity/429

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels. Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences. He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. Despite Telegram's origins, its approach to users' security has privacy advocates worried. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country.
from id


Telegram llm security и каланы
FROM American