Warning: file_put_contents(aCache/aDaily/post/llmsecurity/-532-533-534-535-536-): Failed to open stream: No space left on device in /var/www/group-telegram/post.php on line 50
llm security и каланы | Telegram Webview: llmsecurity/536 -
Telegram Group & Telegram Channel
Суть атаки в следующем. У нас есть гипотеза, что есть несколько регионов в пространстве активаций большой языковой модели, которые приводят к одной и той же генерации. У нас есть некоторая защита – для простоты возьмем линейный классификатор – которая обучена на активациях какого-нибудь слоя разделять активации, которые вызываются джейлбрейками и прочим недопустимым выводом, от обычных допустимых запросов. Давайте попробуем найти такой вызывающий недопустимый ввод регион, который находится по другую сторону от разделяющей гиперплоскости классификатора. Возможно ли это? Оказывается, что да.

Для этого мы будем решать оптимизационную задачу: сохранить поведение таким же (назовем это поведенческой функцией потерь) и при этом обмануть классификатор (функция потерь обфускации). В качестве последнего может выступать собственно скор линейного или MLP-классификатора, KL-дивергенция при детектировании OOD или даже сила активации признака, если в качестве детектора мы используем SAE. Для поведенческого лосса возьмем просто кросс-энтропию для необходимого нам продолжения. Для оценки эффективности возьмем StrongREJECT, метрикой же будет выступать Recall@FPR при FPR равном достаточно либеральным 1%. Жертвой выступит Llama-3-8B.

В качестве адверсариал-суффикса можно использовать как софт-промпт (эмбеддинги, которым не соответствуют реальные токены), так и пространство токенов, причем в пространстве токенов атака делается на базе FLRT без доступа к градиентам. Результатом такой атаки становится 0% детектирования атак при ~80% успеха с точки зрения недопустимого вывода, причем атаки против одного детектора (например, OOD) переносятся на другой, например, MLP. Кроме того, если натренировать детектор обнаруживать активации, связанные с обфусцирующим суффиксом, то атакующий может найти еще один регион, который приведет к джейлбрейку – и такой пинг-понг может продолжаться десятки раз: исследователи провели эксперимент, в котором атакующий находил новый суффикс после 70 итераций.

В случае с SAE детектор отслеживает, есть ли интересующие нас активации в пространстве разреженного автоэнкодера – там активации каждого нейрона имеют, как предполагается, достаточно однозначную семантику. В качестве атак исследователи ищут такой суффикс, чтобы заставить модель генерировать SQL, не возбуждая признаки, связанные с SQL. SQL вместо джейлбрейка выбирается, чтобы можно было легко оценить качество генерации – достаточно выполнить запрос и проверить результат. Это у них, разумеется, получается: модель, в данном случае Gemma-2-2B, генерирует SQL, не вызывая детекта со стороны монитора SAE, в 100% случаев при чувствительности монитора в 2% FPR. Но здесь находится и ограничение: чем на большем количестве слоев мы пытаемся обфусцировать активации, тем хуже качество SQL: с 34% бейзлайна (без атаки) падение качества может составить до 10% уже при попытках обфускации на 10 слоях.



group-telegram.com/llmsecurity/536
Create:
Last Update:

Суть атаки в следующем. У нас есть гипотеза, что есть несколько регионов в пространстве активаций большой языковой модели, которые приводят к одной и той же генерации. У нас есть некоторая защита – для простоты возьмем линейный классификатор – которая обучена на активациях какого-нибудь слоя разделять активации, которые вызываются джейлбрейками и прочим недопустимым выводом, от обычных допустимых запросов. Давайте попробуем найти такой вызывающий недопустимый ввод регион, который находится по другую сторону от разделяющей гиперплоскости классификатора. Возможно ли это? Оказывается, что да.

Для этого мы будем решать оптимизационную задачу: сохранить поведение таким же (назовем это поведенческой функцией потерь) и при этом обмануть классификатор (функция потерь обфускации). В качестве последнего может выступать собственно скор линейного или MLP-классификатора, KL-дивергенция при детектировании OOD или даже сила активации признака, если в качестве детектора мы используем SAE. Для поведенческого лосса возьмем просто кросс-энтропию для необходимого нам продолжения. Для оценки эффективности возьмем StrongREJECT, метрикой же будет выступать Recall@FPR при FPR равном достаточно либеральным 1%. Жертвой выступит Llama-3-8B.

В качестве адверсариал-суффикса можно использовать как софт-промпт (эмбеддинги, которым не соответствуют реальные токены), так и пространство токенов, причем в пространстве токенов атака делается на базе FLRT без доступа к градиентам. Результатом такой атаки становится 0% детектирования атак при ~80% успеха с точки зрения недопустимого вывода, причем атаки против одного детектора (например, OOD) переносятся на другой, например, MLP. Кроме того, если натренировать детектор обнаруживать активации, связанные с обфусцирующим суффиксом, то атакующий может найти еще один регион, который приведет к джейлбрейку – и такой пинг-понг может продолжаться десятки раз: исследователи провели эксперимент, в котором атакующий находил новый суффикс после 70 итераций.

В случае с SAE детектор отслеживает, есть ли интересующие нас активации в пространстве разреженного автоэнкодера – там активации каждого нейрона имеют, как предполагается, достаточно однозначную семантику. В качестве атак исследователи ищут такой суффикс, чтобы заставить модель генерировать SQL, не возбуждая признаки, связанные с SQL. SQL вместо джейлбрейка выбирается, чтобы можно было легко оценить качество генерации – достаточно выполнить запрос и проверить результат. Это у них, разумеется, получается: модель, в данном случае Gemma-2-2B, генерирует SQL, не вызывая детекта со стороны монитора SAE, в 100% случаев при чувствительности монитора в 2% FPR. Но здесь находится и ограничение: чем на большем количестве слоев мы пытаемся обфусцировать активации, тем хуже качество SQL: с 34% бейзлайна (без атаки) падение качества может составить до 10% уже при попытках обфускации на 10 слоях.

BY llm security и каланы








Share with your friend now:
group-telegram.com/llmsecurity/536

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram users are able to send files of any type up to 2GB each and access them from any device, with no limit on cloud storage, which has made downloading files more popular on the platform. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. "Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted. The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel.
from id


Telegram llm security и каланы
FROM American