Telegram Group & Telegram Channel
Forwarded from Machinelearning
📌Tokasaurus: проект для ускорения работы с языковыми моделями.

Tokasaurus — это движок инференса для языковых моделей в режиме высоконагруженных задач. Он максимизирует пропускную способность при работе с LLM, предлагает поддержку API OpenAI, эффективно управляет памятью и оптимизирует вычисления в сценариях, где важно одновременно обрабатывать множество запросов без задержек.

Архитектура Tokasaurus разделена на 3 компонента: веб-сервер, менеджер и модельные воркеры.

🟢Веб-сервер отвечает за взаимодействие с клиентами, принимая запросы и отправляя ответы.

🟢Менеджер, запущенный в отдельном процессе, управляет планированием задач, KV-кешем и группировкой последовательностей с общими префиксами.

🟢Модельные воркеры выполняют прямые запросы к подключенным LLM. Компоненты обмениваются данными асинхронно через очереди, и это позволяет держать GPU загруженным без простоев.

Проект учитывает растущую потребность в масштабировании и предлагает 3 типа параллелизма: дата-параллелизм (dp_size), пайплайн (pp_size) и тензорный (tp_size) с поддержкой AsyncTP.

Async Tensor Parallelism в PyTorch — это техника ускорения распределенных вычислений для LLM, где операции связи (all-gather/reduce-scatter) разбиваются на асинхронные части и перекрываются с матричными умножениями (matmul) с помощью чередующихся CUDA-потоков: пока один поток вычисляет фрагмент matmul, другой параллельно передаtт данные для следующего фрагмента через P2P-копирование (NVLink + copy engines), минимизируя простои GPU.


При использовании нескольких GPU, например, dp_size=2 и pp_size=4, система задействует 8 GPU, создавая 2 дублирующиеся группы по 4 GPU каждая. При этом параметры управления памятью (kv_cache_size_num_tokens, max_seqs_per_forward) применяются к каждой дата-параллельной группе отдельно. Это позволяет тонко управлять ресурсами, исходя из контекста конкретных нагрузок.

Tokasaurus поддерживает модели семейств Llama3 и Qwen2, использует технологию Hydragen для ускорения внимания над общими префиксами последовательностей.

⚠️ Проект пока молодой, поэтому некоторые функции могут быть нестабильными. Разработчики активно работают над улучшениями.


📌 Лицензирование: Apache 2.0 License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM # #Tokasaurus #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍1🔥1



group-telegram.com/machinelearning_interview/1842
Create:
Last Update:

📌Tokasaurus: проект для ускорения работы с языковыми моделями.

Tokasaurus — это движок инференса для языковых моделей в режиме высоконагруженных задач. Он максимизирует пропускную способность при работе с LLM, предлагает поддержку API OpenAI, эффективно управляет памятью и оптимизирует вычисления в сценариях, где важно одновременно обрабатывать множество запросов без задержек.

Архитектура Tokasaurus разделена на 3 компонента: веб-сервер, менеджер и модельные воркеры.

🟢Веб-сервер отвечает за взаимодействие с клиентами, принимая запросы и отправляя ответы.

🟢Менеджер, запущенный в отдельном процессе, управляет планированием задач, KV-кешем и группировкой последовательностей с общими префиксами.

🟢Модельные воркеры выполняют прямые запросы к подключенным LLM. Компоненты обмениваются данными асинхронно через очереди, и это позволяет держать GPU загруженным без простоев.

Проект учитывает растущую потребность в масштабировании и предлагает 3 типа параллелизма: дата-параллелизм (dp_size), пайплайн (pp_size) и тензорный (tp_size) с поддержкой AsyncTP.

Async Tensor Parallelism в PyTorch — это техника ускорения распределенных вычислений для LLM, где операции связи (all-gather/reduce-scatter) разбиваются на асинхронные части и перекрываются с матричными умножениями (matmul) с помощью чередующихся CUDA-потоков: пока один поток вычисляет фрагмент matmul, другой параллельно передаtт данные для следующего фрагмента через P2P-копирование (NVLink + copy engines), минимизируя простои GPU.


При использовании нескольких GPU, например, dp_size=2 и pp_size=4, система задействует 8 GPU, создавая 2 дублирующиеся группы по 4 GPU каждая. При этом параметры управления памятью (kv_cache_size_num_tokens, max_seqs_per_forward) применяются к каждой дата-параллельной группе отдельно. Это позволяет тонко управлять ресурсами, исходя из контекста конкретных нагрузок.

Tokasaurus поддерживает модели семейств Llama3 и Qwen2, использует технологию Hydragen для ускорения внимания над общими префиксами последовательностей.

⚠️ Проект пока молодой, поэтому некоторые функции могут быть нестабильными. Разработчики активно работают над улучшениями.


📌 Лицензирование: Apache 2.0 License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM # #Tokasaurus #Github

BY Machine learning Interview




Share with your friend now:
group-telegram.com/machinelearning_interview/1842

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice. Telegram Messenger Blocks Navalny Bot During Russian Election The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy."
from id


Telegram Machine learning Interview
FROM American