Telegram Group & Telegram Channel
Вероятность как "частота" и как "плотность (вещества?)"

Обыватели воспринимают вероятность как "частоту". Ну вроде как подбросили монетку 100 раз, если примерно 50 раз выпал орёл и 50 раз решка, то вероятность каждого исхода была 1/2.

Уже в таком простом случае большое количество логических натяжек и проблем.

Статистики бы сказали, что провели "биномиальный тест". Т.е. исходя из наблюдаемого распределения результатов вывели, задним числом, какая могла бы быть вероятность отдельно взятого исхода в одном подбрасывании. Чем длиннее последовательность бросков, тем точнее можно дать соответствующую оценку (тем меньше так называемое p-value — т.е. вероятность сделать ошибочный статистический вывод).

В более сложных статистических методах оценивается не вероятность отдельного исхода, а соответствие некоторых характеристик (например, среднего значения) частной выборки "генеральной совокупности" (т.е. всему исследуемому множеству объектов/явлений — например, всем людям).

Всё это довольно сложная машинерия, опирающаяся со стороны собственно теорвера на "законы больших чисел" и "центральные предельные теоремы", а со стороны статистики на бесчисленное количество распределений и статистических проверок.

Насколько я понимаю, статистики-прикладники (социологи и психологи, например) не разбираются в первом, а математики не особо интересуются вторым :)

Для математиков вероятность это не "частота", а скорее "плотность вещества". Честная монетка это что-то вроде "гантели": невесомая твёрдая перемычка, связывающая два шарика одинаковой массы (для удобства суммарную массу примем за 1).

Если вероятности выпадения орла и решки не равны, "гантелю" начинает перекашивать; чтобы её уравновесить надо сдвинуть точку опоры в сторону большей массы. Что соответствует вычислению "математического ожидания".

Термины типа "момент", "второй момент", "второй центральный момент" (= дисперсия/variance), похоже, напрямую заимствованы математиками из механики — там "момент инерции" (вокруг начала координат или центра масс соответственно) в точности оно вот и есть.

Теорема Штейнера о моменте инерции относительно сдвинутой оси превращается в (более простую за счёт нормализации "массы" к единице) формулу математического ожидания квадрата сдвинутой на фиксированное значение случайной величины.

После Гальтона (о котором, кстати, писали ранее: 1, 2, 3) и Пирсона, по-видимому популяризировавших в теорвере термин "момент", Колмогоров наконец провёл окончательную формализацию, закрепив понимание вероятности как меры на множестве.

Представим что у нас есть две случайных величины X и Y, как на первой картинке выше, и их совместное распределение (высота столба над "столом" показывает вероятность совместного "выпадения" X,Y в соответствующую точку пространства). Каждая при этом может быть распределена произвольно, не равномерно.

Как узнать вероятность события, например, "Y больше или равно X"? Через двойной интеграл меры ("плотности вероятности") по множеству (квадрату X,Y) в заданном регионе (Y ≥ X) :)

А как это сделать? Да очень просто. Представим, что столбики указывают на плотность материала стола (чем выше столбик, тем плотнее соответствующее место стола). Проведём диагональную линию из нижнего левого в верхний правый угол квадрата, которая разделит его на два треугольника: там где X меньше Y, и там где Y меньше X (прямая y = x, "граница множества"). Дальше вырезаем ножовкой из стола нужный нам треугольник (где Y больше X, т.е. верхний). Кидаем его на весы. Готово, показания весов и есть искомая вероятность!



group-telegram.com/metaprogramming/379
Create:
Last Update:

Вероятность как "частота" и как "плотность (вещества?)"

Обыватели воспринимают вероятность как "частоту". Ну вроде как подбросили монетку 100 раз, если примерно 50 раз выпал орёл и 50 раз решка, то вероятность каждого исхода была 1/2.

Уже в таком простом случае большое количество логических натяжек и проблем.

Статистики бы сказали, что провели "биномиальный тест". Т.е. исходя из наблюдаемого распределения результатов вывели, задним числом, какая могла бы быть вероятность отдельно взятого исхода в одном подбрасывании. Чем длиннее последовательность бросков, тем точнее можно дать соответствующую оценку (тем меньше так называемое p-value — т.е. вероятность сделать ошибочный статистический вывод).

В более сложных статистических методах оценивается не вероятность отдельного исхода, а соответствие некоторых характеристик (например, среднего значения) частной выборки "генеральной совокупности" (т.е. всему исследуемому множеству объектов/явлений — например, всем людям).

Всё это довольно сложная машинерия, опирающаяся со стороны собственно теорвера на "законы больших чисел" и "центральные предельные теоремы", а со стороны статистики на бесчисленное количество распределений и статистических проверок.

Насколько я понимаю, статистики-прикладники (социологи и психологи, например) не разбираются в первом, а математики не особо интересуются вторым :)

Для математиков вероятность это не "частота", а скорее "плотность вещества". Честная монетка это что-то вроде "гантели": невесомая твёрдая перемычка, связывающая два шарика одинаковой массы (для удобства суммарную массу примем за 1).

Если вероятности выпадения орла и решки не равны, "гантелю" начинает перекашивать; чтобы её уравновесить надо сдвинуть точку опоры в сторону большей массы. Что соответствует вычислению "математического ожидания".

Термины типа "момент", "второй момент", "второй центральный момент" (= дисперсия/variance), похоже, напрямую заимствованы математиками из механики — там "момент инерции" (вокруг начала координат или центра масс соответственно) в точности оно вот и есть.

Теорема Штейнера о моменте инерции относительно сдвинутой оси превращается в (более простую за счёт нормализации "массы" к единице) формулу математического ожидания квадрата сдвинутой на фиксированное значение случайной величины.

После Гальтона (о котором, кстати, писали ранее: 1, 2, 3) и Пирсона, по-видимому популяризировавших в теорвере термин "момент", Колмогоров наконец провёл окончательную формализацию, закрепив понимание вероятности как меры на множестве.

Представим что у нас есть две случайных величины X и Y, как на первой картинке выше, и их совместное распределение (высота столба над "столом" показывает вероятность совместного "выпадения" X,Y в соответствующую точку пространства). Каждая при этом может быть распределена произвольно, не равномерно.

Как узнать вероятность события, например, "Y больше или равно X"? Через двойной интеграл меры ("плотности вероятности") по множеству (квадрату X,Y) в заданном регионе (Y ≥ X) :)

А как это сделать? Да очень просто. Представим, что столбики указывают на плотность материала стола (чем выше столбик, тем плотнее соответствующее место стола). Проведём диагональную линию из нижнего левого в верхний правый угол квадрата, которая разделит его на два треугольника: там где X меньше Y, и там где Y меньше X (прямая y = x, "граница множества"). Дальше вырезаем ножовкой из стола нужный нам треугольник (где Y больше X, т.е. верхний). Кидаем его на весы. Готово, показания весов и есть искомая вероятность!

BY Metaprogramming


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/metaprogramming/379

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK.
from id


Telegram Metaprogramming
FROM American