Telegram Group & Telegram Channel
tasty-visial-bci-nov-2024.png
9 MB
tasty visual bci papers which i like in november of 2024
[2/3]

MonkeySee: decoding natural images straight from primate brain activity

tl;dr: CNN decoder reconstructs what a monkey sees from its brain signals in V1, V4, and IT areas.
• neural signals from 576 electrodes in V1/V4/IT areas record monkey's response to visual stimuli
• decoder architecture is essentially U-Net with additional learned Gaussian layer mapping electrode signals to 2D space
• model trained on 22,248 images from THINGS dataset achieves high correlation with ground truth
• results show hierarchical processing: V1 better at low-level features, IT at high-level semantics
link: https://openreview.net/forum?id=OWwdlxwnFN


Precise control of neural activity using dynamically optimized electrical stimulation

tl;dr: new optimization approach for neural implants that uses temporal and spatial separation for precise control of neural activity
• the array was placed on retinal ganglion cells (RGCs).
• developed greedy algorithm that selects optimal sequence of simple stimuli.
• uses temporal dithering and spatial multiplexing to avoid nonlinear electrode interactions
• improves visual stimulus reconstruction accuracy by 40% compared to existing methods
link: https://doi.org/10.7554/eLife.83424


my thoughts
The MonkeySee decoder effectively reconstructs images by mirroring how our brain processes information, from basic features in V1 to deeper meanings in IT. While not entirely novel, their experiments are well-designed, using multiple electrodes to cover various visual areas, which is impressive.
Conversely, the electrical stimulation projects are making significant strides, employing clever timing and placement strategies to enhance stimulation. They aim to reduce nonlinear responses by adjusting the timing of stimulation. Perhaps incorporating reinforcement learning could elevate this further?



group-telegram.com/neural_cell/218
Create:
Last Update:

tasty visual bci papers which i like in november of 2024
[2/3]

MonkeySee: decoding natural images straight from primate brain activity

tl;dr: CNN decoder reconstructs what a monkey sees from its brain signals in V1, V4, and IT areas.
• neural signals from 576 electrodes in V1/V4/IT areas record monkey's response to visual stimuli
• decoder architecture is essentially U-Net with additional learned Gaussian layer mapping electrode signals to 2D space
• model trained on 22,248 images from THINGS dataset achieves high correlation with ground truth
• results show hierarchical processing: V1 better at low-level features, IT at high-level semantics
link: https://openreview.net/forum?id=OWwdlxwnFN


Precise control of neural activity using dynamically optimized electrical stimulation

tl;dr: new optimization approach for neural implants that uses temporal and spatial separation for precise control of neural activity
• the array was placed on retinal ganglion cells (RGCs).
• developed greedy algorithm that selects optimal sequence of simple stimuli.
• uses temporal dithering and spatial multiplexing to avoid nonlinear electrode interactions
• improves visual stimulus reconstruction accuracy by 40% compared to existing methods
link: https://doi.org/10.7554/eLife.83424


my thoughts
The MonkeySee decoder effectively reconstructs images by mirroring how our brain processes information, from basic features in V1 to deeper meanings in IT. While not entirely novel, their experiments are well-designed, using multiple electrodes to cover various visual areas, which is impressive.
Conversely, the electrical stimulation projects are making significant strides, employing clever timing and placement strategies to enhance stimulation. They aim to reduce nonlinear responses by adjusting the timing of stimulation. Perhaps incorporating reinforcement learning could elevate this further?

BY the last neural cell


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/neural_cell/218

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. False news often spreads via public groups, or chats, with potentially fatal effects. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations.
from id


Telegram the last neural cell
FROM American