Telegram Group & Telegram Channel
Review | Smart stimulation patterns for visual prostheses

🔘Towards biologically plausible phosphene simulation

tl;dr: Differentiable PyTorch simulator translating V1 stimulation to phosphene perception for end-to-end optimization
- Fully differentiable pipeline allowing optimization of all stimulation parameters via backpropagation
- Based on many experimental data.
- Bridges gap between electrode-level stimulation and resulting visual perception

link: https://doi.org/10.7554/eLife.85812

🔘Human-in-the-Loop Optimization for Visual Prostheses

tl;dr: Neural encoder + Preference bayesian optimization.
- Train deep stimulus encoder (DSE): transform images -> stimulation.
- Add "patient params" 13 values as additional input into DSE.
- Uses Preferential Bayesian Optimization with GP prior to update only "patients" params using only binary comparisons
- Achieves 80% preference alignment after only 150 comparisons despite 20% simulated noise in human feedback

link: https://arxiv.org/abs/2306.13104

🔘MiSO: Optimizing brain stimulation for target neural states

tl;dr: ML system that predicts and optimizes multi-electrode stimulation to achieve specific neural activity patterns
- Utah array on monkey PFC
- One-two electrode stimulation with fixed frequency/amplitude
- Collect paired (stim, signals) data across multiple sessions
- Extract latent features using Factor Analysis (FA)
- Align latent spaces across sessions using Procrustes method
- Train CNN to predict latent states from stim patterns
- Apply epsilon-greedy optimizer to find optimal stimulation in closed-loop

link: https://www.nature.com/articles/s41467-023-42338-8

🔘Precise control with dynamically optimized electrical stimulation

tl;dr: Temporal dithering algorithm exploits neural integration window to enhance visual prosthesis performance by 40%
- Uses triphasic pulses at 0.1ms intervals optimized within neural integration time window (10-20ms)
- Implements spatial multiplexing with 200μm exclusion zones to prevent electrode interference
- Achieves 87% specificity in targeting ON vs OFF retinal pathways, solving a fundamental limitation of current implants

link: https://doi.org/10.7554/eLife.83424

my thoughts
The field is finally moving beyond simplistic zap-and-see approaches. These papers tackle predicting perception, minimizing patient burden, targeting neural states, and improving power efficiency. What excites me most is how these methods could work together - imagine MiSO's targeting combined with human feedback and efficient stimulation patterns. The missing piece? Understanding how neural activity translates to actual perception. Current approaches optimize for either brain patterns OR what people see, not both. I think the next breakthrough will come from models that bridge this gap, perhaps using contrastive learning to connect brain recordings with what people actually report seeing.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/neural_cell/271
Create:
Last Update:

Review | Smart stimulation patterns for visual prostheses

🔘Towards biologically plausible phosphene simulation

tl;dr: Differentiable PyTorch simulator translating V1 stimulation to phosphene perception for end-to-end optimization
- Fully differentiable pipeline allowing optimization of all stimulation parameters via backpropagation
- Based on many experimental data.
- Bridges gap between electrode-level stimulation and resulting visual perception

link: https://doi.org/10.7554/eLife.85812

🔘Human-in-the-Loop Optimization for Visual Prostheses

tl;dr: Neural encoder + Preference bayesian optimization.
- Train deep stimulus encoder (DSE): transform images -> stimulation.
- Add "patient params" 13 values as additional input into DSE.
- Uses Preferential Bayesian Optimization with GP prior to update only "patients" params using only binary comparisons
- Achieves 80% preference alignment after only 150 comparisons despite 20% simulated noise in human feedback

link: https://arxiv.org/abs/2306.13104

🔘MiSO: Optimizing brain stimulation for target neural states

tl;dr: ML system that predicts and optimizes multi-electrode stimulation to achieve specific neural activity patterns
- Utah array on monkey PFC
- One-two electrode stimulation with fixed frequency/amplitude
- Collect paired (stim, signals) data across multiple sessions
- Extract latent features using Factor Analysis (FA)
- Align latent spaces across sessions using Procrustes method
- Train CNN to predict latent states from stim patterns
- Apply epsilon-greedy optimizer to find optimal stimulation in closed-loop

link: https://www.nature.com/articles/s41467-023-42338-8

🔘Precise control with dynamically optimized electrical stimulation

tl;dr: Temporal dithering algorithm exploits neural integration window to enhance visual prosthesis performance by 40%
- Uses triphasic pulses at 0.1ms intervals optimized within neural integration time window (10-20ms)
- Implements spatial multiplexing with 200μm exclusion zones to prevent electrode interference
- Achieves 87% specificity in targeting ON vs OFF retinal pathways, solving a fundamental limitation of current implants

link: https://doi.org/10.7554/eLife.83424

my thoughts
The field is finally moving beyond simplistic zap-and-see approaches. These papers tackle predicting perception, minimizing patient burden, targeting neural states, and improving power efficiency. What excites me most is how these methods could work together - imagine MiSO's targeting combined with human feedback and efficient stimulation patterns. The missing piece? Understanding how neural activity translates to actual perception. Current approaches optimize for either brain patterns OR what people see, not both. I think the next breakthrough will come from models that bridge this gap, perhaps using contrastive learning to connect brain recordings with what people actually report seeing.

BY the last neural cell




Share with your friend now:
group-telegram.com/neural_cell/271

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War."
from id


Telegram the last neural cell
FROM American