Telegram Group & Telegram Channel
Праздники и отпуск прошли, теперь пора и что-нибудь интересное разобрать. Впереди 9 часов в поезде и много отложенных статей — вечер обеспечен 🏃

Начнем с The Lessons of Developing Process Reward Models in Mathematical Reasoning. Исследование от команды Qwen на тему, как делать хорошие PRM (Process Reward Model) в математике, то есть модели, оценивающие промежуточные рассуждения модели. Ребята в последнее время очень часто радуют не только классными моделями, но и качественными статьями.

Для того, чтобы тренировать модель оценивать шаги рассуждений, нам нужна разметка, где каждому такому шаг присвоена некоторая метка. Вариантов тут немного:

- Использовать LLM-as-a-judge (просим другую модель оценить шаг) или ручную разметку.
- Использовать monte-carlo (MC) оценку шага, то есть для оценки шага делаем из него множество продолжений и смотрим, сколько из них завершились успехом. Метку можно определить как a) soft label — доля успешных продолжений или b) hard label — 1, если хотя бы одно продолжение успешно и 0 иначе.

Авторы делают большое кол-во экспериментов, из которых формулируют много интересных тезисов, например:

- MC методы неявно закладывают смысл value функции в оценку шага, то есть оценивают перспективность состояния для будущего решения задачи. Это может накладывать ограничения в умения модели находить неверные шаги.
- MC методы имеют меньший прирост качества от скейлинга данных по сравнению с LLM-as-a-judge и human annotation.
- Большая проблема MC методов заключается в том, что модели склонны решать задачи даже со множеством ошибок в рассуждениях. Это приводит к артефактам во время инференса.

Это только малая часть, в статье намного больше мыслей, подкрепленных обильными экспериментами, рекомендую почитать всем интересующимся реворд моделями.

Далее авторы предлагают алгоритм “консенсуса” между MC методом и LLM-as-a-judge, обученные модели показывают соту на математических бенчмарках и выложены в опенсурс (7B и 72B)
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/AIexTime/105
Create:
Last Update:

Праздники и отпуск прошли, теперь пора и что-нибудь интересное разобрать. Впереди 9 часов в поезде и много отложенных статей — вечер обеспечен 🏃

Начнем с The Lessons of Developing Process Reward Models in Mathematical Reasoning. Исследование от команды Qwen на тему, как делать хорошие PRM (Process Reward Model) в математике, то есть модели, оценивающие промежуточные рассуждения модели. Ребята в последнее время очень часто радуют не только классными моделями, но и качественными статьями.

Для того, чтобы тренировать модель оценивать шаги рассуждений, нам нужна разметка, где каждому такому шаг присвоена некоторая метка. Вариантов тут немного:

- Использовать LLM-as-a-judge (просим другую модель оценить шаг) или ручную разметку.
- Использовать monte-carlo (MC) оценку шага, то есть для оценки шага делаем из него множество продолжений и смотрим, сколько из них завершились успехом. Метку можно определить как a) soft label — доля успешных продолжений или b) hard label — 1, если хотя бы одно продолжение успешно и 0 иначе.

Авторы делают большое кол-во экспериментов, из которых формулируют много интересных тезисов, например:

- MC методы неявно закладывают смысл value функции в оценку шага, то есть оценивают перспективность состояния для будущего решения задачи. Это может накладывать ограничения в умения модели находить неверные шаги.
- MC методы имеют меньший прирост качества от скейлинга данных по сравнению с LLM-as-a-judge и human annotation.
- Большая проблема MC методов заключается в том, что модели склонны решать задачи даже со множеством ошибок в рассуждениях. Это приводит к артефактам во время инференса.

Это только малая часть, в статье намного больше мыслей, подкрепленных обильными экспериментами, рекомендую почитать всем интересующимся реворд моделями.

Далее авторы предлагают алгоритм “консенсуса” между MC методом и LLM-as-a-judge, обученные модели показывают соту на математических бенчмарках и выложены в опенсурс (7B и 72B)

BY AI[ex]Time


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/AIexTime/105

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In 2018, Russia banned Telegram although it reversed the prohibition two years later. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look.
from in


Telegram AI[ex]Time
FROM American