Telegram Group & Telegram Channel
🌟 FlashInfer: Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ° ускорСния LLM-инфСрСнса Π½Π° GPU.

FlashInfer - это Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ° для ускорСния Ρ€Π°Π±ΠΎΡ‚Ρ‹ с LLM, созданная NVIDIA, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π° GPU ΠΈ Π³ΠΈΠ±ΠΊΠΎΡΡ‚ΡŒ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊΠΎΠ². Π•t главная Ρ†Π΅Π»ΡŒ β€” ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ врСмя Π²Ρ‹Π²ΠΎΠ΄Π° тСкста, ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ позволяя ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π°ΠΌ быстро Π²Π½Π΅Π΄Ρ€ΡΡ‚ΡŒ Π½ΠΎΠ²Ρ‹Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ ΠΈ Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠ΄ Ρ€Π°Π·Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ.

Π•Π΅ Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π° спроСктирована Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΡΡ‚Π°Π²Π°Ρ‚ΡŒΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΈ появлСнии Π½ΠΎΠ²Ρ‹Ρ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ²: Π±ΡƒΠ΄ΡŒ Ρ‚ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ использования кэша ΠΈΠ»ΠΈ экспСримСнты с Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π°ΠΌΠΈ внимания. Плюс ΠΊ этому, Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ° лСгковСсна, ΠΎΠ½Π° Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ установки Π»ΠΈΡˆΠ½ΠΈΡ… зависимостСй, Π° Π΅Π΅ API Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ‚ стандартныС инструмСнты PyTorch.

FlashInfer базируСтся Π½Π° 2 ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ°Ρ… : эффСктивноС ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΠ°ΠΌΡΡ‚ΡŒΡŽ ΠΈ динамичСскоС ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ вычислСний. Π‘ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ° ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ Ρ…Ρ€Π°Π½Π΅Π½ΠΈΠ΅ KV-cache Ρ‡Π΅Ρ€Π΅Π· Π±Π»ΠΎΡ‡Π½ΠΎ-Ρ€Π°Π·Ρ€Π΅ΠΆΠ΅Π½Π½Ρ‹Π΅ структуры, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ объСм Π»ΠΈΡˆΠ½ΠΈΡ… ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½ΠΈΠΉ ΠΊ памяти.

Π­Ρ‚ΠΎ особСнно Π²Π°ΠΆΠ½ΠΎ ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ запросов с Ρ€Π°Π·Π½ΠΎΠΉ Π΄Π»ΠΈΠ½ΠΎΠΉ тСкста. Π’Π°ΠΊΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ тСхнология JIT-компиляции, которая Π½Π° Π»Π΅Ρ‚Ρƒ Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅Ρ‚ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ CUDA-ядра ΠΏΠΎΠ΄ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ.

АрхитСктура FlashInfer Ρ€Π°Π·Π±ΠΈΡ‚Π° Π½Π° 4 модуля: Attention, GEMM, Communication ΠΈ Token sampling.

🟒«AttentionΒ» Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ с Π»ΡŽΠ±Ρ‹ΠΌΠΈ схСмами маскирования ΠΈ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ кодирования, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΡƒΠ½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ прСдставлСниС кэша ΠΊΠ°ΠΊ Ρ€Π°Π·Ρ€Π΅ΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹.

🟒GEMM ΠΈ Communication ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‚ Π·Π° ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ слоТныС сцСнарии Π²Ρ€ΠΎΠ΄Π΅ grouped-GEMM (мноТСство ΠΌΠ΅Π»ΠΊΠΈΡ… ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΉ Π·Π° ΠΎΠ΄ΠΈΠ½ Π²Ρ‹Π·ΠΎΠ²). Для распрСдСлСнных систСм Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ all-reduce ΠΈ all-to-all, Ρ‡Ρ‚ΠΎ ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½ΠΎ для MoE-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ.

🟒"Token sampling" ускоряСт Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΡŽ тСкста, замСняя Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ сортировки вСроятностСй Π½Π° rejection-based Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹, ΠΎΡ‚ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ маловСроятныС Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ Π½Π° Π»Π΅Ρ‚Ρƒ.

FlashInfer ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ PyTorch Ρ‡Π΅Ρ€Π΅Π· собствСнныС ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Ρ‹ ΠΈ DLPack API, Ρ‚Π΅ΠΌ самым ΡƒΠΏΡ€ΠΎΡ‰Π°Π΅Ρ‚ Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ Π² Ρ„Ρ€Π΅ΠΉΠΌΠ²ΠΎΡ€ΠΊΠΈ vLLM ΠΈ SGLang. Благодаря Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΡŽ процСсса Π½Π° этапы «планирования» ΠΈ «запуска» Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ: Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΌ шагС выбираСтся ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ ядро ΠΏΠΎΠ΄ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ запроса, Π° Π·Π°Ρ‚Π΅ΠΌ ΠΎΠ½ΠΎ ΠΏΠ΅Ρ€Π΅ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡.


πŸ“Œ Π›ΠΈΡ†Π΅Π½Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅: Apache 2.0 License.


πŸŸ‘Π‘Ρ‚Π°Ρ‚ΡŒΡ
πŸŸ‘Π”ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ
🟑Arxiv
πŸ–₯GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #FlashInfer #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_machinelearning_big_data/7812
Create:
Last Update:

🌟 FlashInfer: Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ° ускорСния LLM-инфСрСнса Π½Π° GPU.

FlashInfer - это Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ° для ускорСния Ρ€Π°Π±ΠΎΡ‚Ρ‹ с LLM, созданная NVIDIA, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π° GPU ΠΈ Π³ΠΈΠ±ΠΊΠΎΡΡ‚ΡŒ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊΠΎΠ². Π•t главная Ρ†Π΅Π»ΡŒ β€” ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ врСмя Π²Ρ‹Π²ΠΎΠ΄Π° тСкста, ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ позволяя ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π°ΠΌ быстро Π²Π½Π΅Π΄Ρ€ΡΡ‚ΡŒ Π½ΠΎΠ²Ρ‹Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ ΠΈ Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠ΄ Ρ€Π°Π·Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ.

Π•Π΅ Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π° спроСктирована Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΡΡ‚Π°Π²Π°Ρ‚ΡŒΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΈ появлСнии Π½ΠΎΠ²Ρ‹Ρ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ²: Π±ΡƒΠ΄ΡŒ Ρ‚ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ использования кэша ΠΈΠ»ΠΈ экспСримСнты с Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π°ΠΌΠΈ внимания. Плюс ΠΊ этому, Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ° лСгковСсна, ΠΎΠ½Π° Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ установки Π»ΠΈΡˆΠ½ΠΈΡ… зависимостСй, Π° Π΅Π΅ API Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ‚ стандартныС инструмСнты PyTorch.

FlashInfer базируСтся Π½Π° 2 ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ°Ρ… : эффСктивноС ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΠ°ΠΌΡΡ‚ΡŒΡŽ ΠΈ динамичСскоС ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ вычислСний. Π‘ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ° ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ Ρ…Ρ€Π°Π½Π΅Π½ΠΈΠ΅ KV-cache Ρ‡Π΅Ρ€Π΅Π· Π±Π»ΠΎΡ‡Π½ΠΎ-Ρ€Π°Π·Ρ€Π΅ΠΆΠ΅Π½Π½Ρ‹Π΅ структуры, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ объСм Π»ΠΈΡˆΠ½ΠΈΡ… ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½ΠΈΠΉ ΠΊ памяти.

Π­Ρ‚ΠΎ особСнно Π²Π°ΠΆΠ½ΠΎ ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ запросов с Ρ€Π°Π·Π½ΠΎΠΉ Π΄Π»ΠΈΠ½ΠΎΠΉ тСкста. Π’Π°ΠΊΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ тСхнология JIT-компиляции, которая Π½Π° Π»Π΅Ρ‚Ρƒ Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅Ρ‚ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ CUDA-ядра ΠΏΠΎΠ΄ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ.

АрхитСктура FlashInfer Ρ€Π°Π·Π±ΠΈΡ‚Π° Π½Π° 4 модуля: Attention, GEMM, Communication ΠΈ Token sampling.

🟒«AttentionΒ» Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ с Π»ΡŽΠ±Ρ‹ΠΌΠΈ схСмами маскирования ΠΈ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ кодирования, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΡƒΠ½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ прСдставлСниС кэша ΠΊΠ°ΠΊ Ρ€Π°Π·Ρ€Π΅ΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹.

🟒GEMM ΠΈ Communication ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‚ Π·Π° ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ слоТныС сцСнарии Π²Ρ€ΠΎΠ΄Π΅ grouped-GEMM (мноТСство ΠΌΠ΅Π»ΠΊΠΈΡ… ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΉ Π·Π° ΠΎΠ΄ΠΈΠ½ Π²Ρ‹Π·ΠΎΠ²). Для распрСдСлСнных систСм Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ all-reduce ΠΈ all-to-all, Ρ‡Ρ‚ΠΎ ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½ΠΎ для MoE-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ.

🟒"Token sampling" ускоряСт Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΡŽ тСкста, замСняя Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ сортировки вСроятностСй Π½Π° rejection-based Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹, ΠΎΡ‚ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ маловСроятныС Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ Π½Π° Π»Π΅Ρ‚Ρƒ.

FlashInfer ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ PyTorch Ρ‡Π΅Ρ€Π΅Π· собствСнныС ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Ρ‹ ΠΈ DLPack API, Ρ‚Π΅ΠΌ самым ΡƒΠΏΡ€ΠΎΡ‰Π°Π΅Ρ‚ Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ Π² Ρ„Ρ€Π΅ΠΉΠΌΠ²ΠΎΡ€ΠΊΠΈ vLLM ΠΈ SGLang. Благодаря Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΡŽ процСсса Π½Π° этапы «планирования» ΠΈ «запуска» Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ: Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΌ шагС выбираСтся ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ ядро ΠΏΠΎΠ΄ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ запроса, Π° Π·Π°Ρ‚Π΅ΠΌ ΠΎΠ½ΠΎ ΠΏΠ΅Ρ€Π΅ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡.


πŸ“Œ Π›ΠΈΡ†Π΅Π½Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅: Apache 2.0 License.


πŸŸ‘Π‘Ρ‚Π°Ρ‚ΡŒΡ
πŸŸ‘Π”ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ
🟑Arxiv
πŸ–₯GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #FlashInfer #NVIDIA

BY Machinelearning






Share with your friend now:
group-telegram.com/ai_machinelearning_big_data/7812

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. NEWS
from in


Telegram Machinelearning
FROM American