Telegram Group & Telegram Channel
🩺 Google выпустила MedGemma — открытые модели ИИ для медицины

На Hugging Face вышла коллекция MedGemma, созданная Google на базе Gemma 3 специально для медицинских задач. Это мощные модели, способные анализировать как текст, так и медицинские изображения — от рентгена до дерматологии.

📦 В коллекции:
medgemma-4b-it — мультимодальная модель (текст + изображения)
medgemma-4b-pt — предварительно обученная версия
medgemma-27b-text-it — огромная текстовая модель для клинической документации

🔍 Что умеют:
Обнаружение патологий на рентген-снимках
Ответы на медицинские вопросы (VQA)
Генерация медицинских отчётов
Обработка клинических заметок, триажа, историй болезни

📊 Бенчмарки:
• CheXpert F1 (Top‑5): 48.1 vs 31.2 у базовой
• DermMCQA точность: 71.8%
• VQA‑Rad F1: 49.9

🧪 Пример использования:

from transformers import pipeline
pipe = pipeline("image-text-to-text", model="google/medgemma-4b-it")


🔗 Hugging Face: https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4

📝 Лицензия: Apache 2.0 (с медицинским соглашением)

#MedGemma #GoogleAI #Gemma3 #HealthcareAI #RadiologyAI #MedicalAI #OpenSourceAI #HuggingFace



group-telegram.com/data_analysis_ml/3594
Create:
Last Update:

🩺 Google выпустила MedGemma — открытые модели ИИ для медицины

На Hugging Face вышла коллекция MedGemma, созданная Google на базе Gemma 3 специально для медицинских задач. Это мощные модели, способные анализировать как текст, так и медицинские изображения — от рентгена до дерматологии.

📦 В коллекции:
medgemma-4b-it — мультимодальная модель (текст + изображения)
medgemma-4b-pt — предварительно обученная версия
medgemma-27b-text-it — огромная текстовая модель для клинической документации

🔍 Что умеют:
Обнаружение патологий на рентген-снимках
Ответы на медицинские вопросы (VQA)
Генерация медицинских отчётов
Обработка клинических заметок, триажа, историй болезни

📊 Бенчмарки:
• CheXpert F1 (Top‑5): 48.1 vs 31.2 у базовой
• DermMCQA точность: 71.8%
• VQA‑Rad F1: 49.9

🧪 Пример использования:

from transformers import pipeline
pipe = pipeline("image-text-to-text", model="google/medgemma-4b-it")


🔗 Hugging Face: https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4

📝 Лицензия: Apache 2.0 (с медицинским соглашением)

#MedGemma #GoogleAI #Gemma3 #HealthcareAI #RadiologyAI #MedicalAI #OpenSourceAI #HuggingFace

BY Анализ данных (Data analysis)





Share with your friend now:
group-telegram.com/data_analysis_ml/3594

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK.
from in


Telegram Анализ данных (Data analysis)
FROM American