Telegram Group & Telegram Channel
Bid Shading

Сегодня разберем алгоритм маржинальности 💵 в аукционах в программатик рекламы, т.н. Bid Shading. Согласно статьи на AdExchanger, многие DSP использует этот алгоритм для искусственного занижения ставки, и для многих он является черным ящиком. Мы же разберем, как можно реализовать алгоритм технически.

Для начала введем величину ставки bid к примеру для DSP (платформы стороны спроса). Она представляет собой "истинную" цену, которую DSP готова заплатить за покупаемый инвентарь. Когда мы конкурируем с другими DSP, может случиться так, что мы сделаем (и оплатим) ставку слишком высокую, не адаптированную к уровню конкуренции.

Чтобы адаптировать ставку по отношению к другим игрокам и максимизировать маржу мы введем коэффициент shadingFactor в диапазоне [0..1]. В двух крайних случаях, если shadingFactor = 0, то ставку не понижаем, а если shadingFactor = 1 , то бидим 0.

Запишем формулу для маржи с учетом shadingFactor и заниженой "шейдированной" ставки shadedBid


shadedBid = bid x (1 - shadingFactor)
margin = bid - shadedBid = bid x shadingFactor


Теперь нужно задаться вопросом, как выбрать оптимальный shadingFactor. Сделаем мы это следующим образом,

Сначала нам нужно учитывать вероятность выигрыша p(bidWin | bidRequest, bidShadingFactor) нашей платформы в аукционе при условии признаков покупаемого слота, пользователя, спроса и shadingFactor. Это нужно, поскольку чем выше shadingFactor, тем ниже вероятность победы в аукционе. Поскольку мы ввели в формулу маржи вероятность, то нам стоит максимизировать ее мат. ожидание


E(margin) = bid x shadingFactor x p(bidWin | bidRequest, bidShadingFactor)


При этом вероятность победы в аукционе p(bidWin) может предсказываться для каждого слота с помощью классической бинарной ML-моделью. Тогда оптимальный коэффициент bidShading' запишется в виде:


bidShadingFactor' = argmax(E(margin))


Этот оптимальный коэффициент мы можем включить в формулу пониженной шейдированной ставки


shadedBid = bid x (1 - shadingFactor')


Новая ставка shadedBid будет адаптирована к ставкам конкурентов и будем принимать во внимание возможную просадку доли побед bidWin в аукционах.
🔥7👍41



group-telegram.com/dsinsights/312
Create:
Last Update:

Bid Shading

Сегодня разберем алгоритм маржинальности 💵 в аукционах в программатик рекламы, т.н. Bid Shading. Согласно статьи на AdExchanger, многие DSP использует этот алгоритм для искусственного занижения ставки, и для многих он является черным ящиком. Мы же разберем, как можно реализовать алгоритм технически.

Для начала введем величину ставки bid к примеру для DSP (платформы стороны спроса). Она представляет собой "истинную" цену, которую DSP готова заплатить за покупаемый инвентарь. Когда мы конкурируем с другими DSP, может случиться так, что мы сделаем (и оплатим) ставку слишком высокую, не адаптированную к уровню конкуренции.

Чтобы адаптировать ставку по отношению к другим игрокам и максимизировать маржу мы введем коэффициент shadingFactor в диапазоне [0..1]. В двух крайних случаях, если shadingFactor = 0, то ставку не понижаем, а если shadingFactor = 1 , то бидим 0.

Запишем формулу для маржи с учетом shadingFactor и заниженой "шейдированной" ставки shadedBid


shadedBid = bid x (1 - shadingFactor)
margin = bid - shadedBid = bid x shadingFactor


Теперь нужно задаться вопросом, как выбрать оптимальный shadingFactor. Сделаем мы это следующим образом,

Сначала нам нужно учитывать вероятность выигрыша p(bidWin | bidRequest, bidShadingFactor) нашей платформы в аукционе при условии признаков покупаемого слота, пользователя, спроса и shadingFactor. Это нужно, поскольку чем выше shadingFactor, тем ниже вероятность победы в аукционе. Поскольку мы ввели в формулу маржи вероятность, то нам стоит максимизировать ее мат. ожидание


E(margin) = bid x shadingFactor x p(bidWin | bidRequest, bidShadingFactor)


При этом вероятность победы в аукционе p(bidWin) может предсказываться для каждого слота с помощью классической бинарной ML-моделью. Тогда оптимальный коэффициент bidShading' запишется в виде:


bidShadingFactor' = argmax(E(margin))


Этот оптимальный коэффициент мы можем включить в формулу пониженной шейдированной ставки


shadedBid = bid x (1 - shadingFactor')


Новая ставка shadedBid будет адаптирована к ставкам конкурентов и будем принимать во внимание возможную просадку доли побед bidWin в аукционах.

BY ML Advertising




Share with your friend now:
group-telegram.com/dsinsights/312

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. Despite Telegram's origins, its approach to users' security has privacy advocates worried. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram.
from in


Telegram ML Advertising
FROM American