Telegram Group & Telegram Channel
В прошлый раз мы говорили о размере орбиты. Сегодня мы перейдем к обсуждению формы орбиты и первый раз затронем ситуацию, когда орбита перестает быть замкнутой.

Замкнутая орбита имеет форму эллипса, в частности, окружности. Форму эллипса можно характеризовать через соотношение его большой и малой полуоси: чем первая больше другой, тем более вытянут эллипс. Когда они совпадают, эллипс совпадает с окружностью, а большая полуось – с радиусом окружности.

Но есть куда более удобная возможность оценить форму орбиты: математика позволяет вывести из уравнения движения тела в центральном поле параметр, который называется эксцентриситет (обозначается латинской буквой «e»).

Это величина, которая может принимать значения от нуля до бесконечности и показывает, насколько форма орбиты отличается от окружности:

Если эксцентриситет равен нулю (e = 0), то орбита – окружность
Если эксцентриситет больше нуля и меньше единицы (0 < e < 1) – это все более и более вытянутый эллипс ❷.

Если апоцентр эллиптической орбиты выходит за пределы сферы Хилла*, то уже нельзя говорить о том, что орбита остается замкнутой. Это соответствует моменту, когда эксцентриситет становится больше или равен единице:

Если эксцентриситет достиг значения 1 (e = 1) – то орбита перестала быть замкнутой и имеет форму параболы
Если эксцентриситет больше 1 (e > 1) – орбита стала гиперболой ❸ (и чем больше эксцентриситет, тем более разомкнуты ветви гиперболы, в пределе стремясь стать прямой).

И для параболы, и для гиперболы значение большой полуоси будет отрицательным, а радиус апоцентра – равным бесконечности, и говорить об их размере затруднительно.

Все перечисленные формы орбит являются коническими сечениями. В реальном мире невозможно найти ситуацию, когда объект движется точно по траекториям, которые можно описать такими идеальными орбитами, но они подходят, как начальное приближение или оценка траектории на короткое время (оскулирующая орбита).

* - при старте с поверхности этому соответствует набор второй космической скорости.

#орбитальнаямеханика



group-telegram.com/explaining_space/35
Create:
Last Update:

В прошлый раз мы говорили о размере орбиты. Сегодня мы перейдем к обсуждению формы орбиты и первый раз затронем ситуацию, когда орбита перестает быть замкнутой.

Замкнутая орбита имеет форму эллипса, в частности, окружности. Форму эллипса можно характеризовать через соотношение его большой и малой полуоси: чем первая больше другой, тем более вытянут эллипс. Когда они совпадают, эллипс совпадает с окружностью, а большая полуось – с радиусом окружности.

Но есть куда более удобная возможность оценить форму орбиты: математика позволяет вывести из уравнения движения тела в центральном поле параметр, который называется эксцентриситет (обозначается латинской буквой «e»).

Это величина, которая может принимать значения от нуля до бесконечности и показывает, насколько форма орбиты отличается от окружности:

Если эксцентриситет равен нулю (e = 0), то орбита – окружность
Если эксцентриситет больше нуля и меньше единицы (0 < e < 1) – это все более и более вытянутый эллипс ❷.

Если апоцентр эллиптической орбиты выходит за пределы сферы Хилла*, то уже нельзя говорить о том, что орбита остается замкнутой. Это соответствует моменту, когда эксцентриситет становится больше или равен единице:

Если эксцентриситет достиг значения 1 (e = 1) – то орбита перестала быть замкнутой и имеет форму параболы
Если эксцентриситет больше 1 (e > 1) – орбита стала гиперболой ❸ (и чем больше эксцентриситет, тем более разомкнуты ветви гиперболы, в пределе стремясь стать прямой).

И для параболы, и для гиперболы значение большой полуоси будет отрицательным, а радиус апоцентра – равным бесконечности, и говорить об их размере затруднительно.

Все перечисленные формы орбит являются коническими сечениями. В реальном мире невозможно найти ситуацию, когда объект движется точно по траекториям, которые можно описать такими идеальными орбитами, но они подходят, как начальное приближение или оценка траектории на короткое время (оскулирующая орбита).

* - при старте с поверхности этому соответствует набор второй космической скорости.

#орбитальнаямеханика

BY Объясняем просто: космос






Share with your friend now:
group-telegram.com/explaining_space/35

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders.
from in


Telegram Объясняем просто: космос
FROM American