RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
#rag
Сегодня продолжу развивать тему RAG, поэтому подготовил для вас разбор свежей статьи RAPTOR. Этот подход устраняет проблему, когда LLM задают тематические вопросы, требующие полного знания целого документа или даже нескольких. Примером такого запроса может быть "Как именно князь Гвидон достиг своего могущества?". Любая система RAG извлечет множество релевантных фрагментов текста по данному запросу, однако они не дадут полной картины, потому что для этого нужно знать все содержание книги. И мы получаем проблему - чем больше фрагментов текста вы включаете в запрос, тем меньше вам нужен RAG.
Что же делает RAPTOR?🦖
Вместо разделения документов на маленькие фрагменты и сохранения их в векторную БД для последующего извлечения, RAPTOR сначала их кластеризует, а после суммаризует каждый кластер с помощью LLM. Он повторяет этот процесс итерационно, пока не остается один, финальный фрагмент текста, в котором содержится вся информация документа. Все это извлекается в общих чертах с готовой суммаризированной информацией, а если необходимы факты, то можно опуститься на слой ниже и извлечь более детальное summary.
RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
#rag
Сегодня продолжу развивать тему RAG, поэтому подготовил для вас разбор свежей статьи RAPTOR. Этот подход устраняет проблему, когда LLM задают тематические вопросы, требующие полного знания целого документа или даже нескольких. Примером такого запроса может быть "Как именно князь Гвидон достиг своего могущества?". Любая система RAG извлечет множество релевантных фрагментов текста по данному запросу, однако они не дадут полной картины, потому что для этого нужно знать все содержание книги. И мы получаем проблему - чем больше фрагментов текста вы включаете в запрос, тем меньше вам нужен RAG.
Что же делает RAPTOR?🦖
Вместо разделения документов на маленькие фрагменты и сохранения их в векторную БД для последующего извлечения, RAPTOR сначала их кластеризует, а после суммаризует каждый кластер с помощью LLM. Он повторяет этот процесс итерационно, пока не остается один, финальный фрагмент текста, в котором содержится вся информация документа. Все это извлекается в общих чертах с готовой суммаризированной информацией, а если необходимы факты, то можно опуститься на слой ниже и извлечь более детальное summary.
Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. He adds: "Telegram has become my primary news source." You may recall that, back when Facebook started changing WhatsApp’s terms of service, a number of news outlets reported on, and even recommended, switching to Telegram. Pavel Durov even said that users should delete WhatsApp “unless you are cool with all of your photos and messages becoming public one day.” But Telegram can’t be described as a more-secure version of WhatsApp. In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels.
from in