Telegram Group & Telegram Channel
Training language models to follow instructions with human feedback [2022]

Те, кто на канал подписан давно, знают, что я делаю обзоры и на классику. RLHF уже можно считать таковой, но я хотел бы взглянуть на эту работу под необычным углом.

Вспомним базовый механизм:

1) Supervised Finetuning - модель файнтюнят на датасете prompt -> output, где output сгенерирован человеком
2) Для набора промптов генерируют пачки вариантов output, далее человек их сортирует, показывая, какие лучше. Учим Reward Model (RM) - модель-энкодер, которая по тексту говорит, насколько он 👍
3) Сам RL - с помощью PPO учим генератор токенов выдавать такую последовательность, которую предпочтёт RM

Итак, теперь давайте проведём RL-аналогию с Го. Действия - это токены или ходы в игре. Состояние - это контекст - весь уже сгенерированный текст или состояние доски в Го. Награда - в случае текстов это выход из Reward Model, а в Го это простая программа, которая со 100% точностью считает, кто выиграл в конце игры.

В Го мы наблюдаем стандартный феномен - это "NP-задача", в которой элементарно понять, выиграна ли игра в конце, но очень сложно сгенерировать траекторию. На доске в 19x19 клеточек генератор учат на миллионах игр, выжимая из RM кучу информации и пытаясь ей угодить. И несмотря на это, на практике приблизиться к RM невозможно, хотя человека обойти всё же удаётся.

Возвращаемся к текстовому RLHF - чем он отличается от Го? Тут несопоставимо более сложное пространство состояний и действий, чем у настольной игры, то есть разрыв между RM и генератором должен быть более существенный. Да, над разрешением проблемы работают, и Chain of Thoughts / Tree of Thoughts / o1 как раз про это - модель лучше умеет понимать по тексту, хороший ли он, и мы ищем способы вытащить из неё крутые траектории.

Но есть более фундаментальная проблема - может быть, вы догадались, это RM. Представим, что произошло нечто невероятное и наш генератор сравнялся с RM по своей крутости - аналог того, что мы в Го построили бы полное дерево по всем 10^170 состояниям. Давайте подумаем, насколько текстовая RM "крутая" вещь?

Фундаментально, её "крутость" ограничена теми данными, на которых она обучалась. У нас есть размеченный людьми датасет из предпочтений ответов, сгенерированных самим генератором (или может быть людьми в каких-то датасетах). Думаю, можно предполагать, что RM по крутости близка к LLM, делающей вывод о готовом ответе. Измеряется крутость разными вещами - например, по уровню запоминания информации она сильно лучше человека, но далека от самого интернета - иначе бы она хотя бы знала все статьи с arxiv. С логикой и решением новых задач наблюдаются сложности.

На мой взгляд, это вполне легко объясняется - у вас есть огромный трансформер, обучающийся предсказывать крутость текста, причём тексты большие, а сэмплов явно не миллиарды (уже на этапе RLHF). У RM есть 2 варианта - закодировать логический вывод, способность обучаться и человеческий интеллект во всех его проявлениях или выучить простые статистические паттерны того, какие комбинации токенов в каком примерно порядке хорошо, а какие плохо. Наиболее простое решение - второе.

Это очень хорошо видно на тестировании LLM на задаче Монти-Холла. Вы даёте модели любую задачку про 3 двери, машину и 2 козы, а у неё в 99.999% обучающих данных с таким контекстом содержится ответ "выбрать другую дверь". Вот она и выбирает другую дверь, какую бы вы модификацию задачи не дали.

Для того, чтобы модель пользовалась логикой, а не релаксированным запоминанием, нужен другой баланс объёма модели, кол-ва данных и, главное, характера данных - необходимы "adversarial"-образцы, в которых ответ неправильный только из-за логической ошибки, хотя вроде бы последовательность очень близка к верной. Тогда мы, может быть, приблизим LLM к чему-то мыслящему.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/219
Create:
Last Update:

Training language models to follow instructions with human feedback [2022]

Те, кто на канал подписан давно, знают, что я делаю обзоры и на классику. RLHF уже можно считать таковой, но я хотел бы взглянуть на эту работу под необычным углом.

Вспомним базовый механизм:

1) Supervised Finetuning - модель файнтюнят на датасете prompt -> output, где output сгенерирован человеком
2) Для набора промптов генерируют пачки вариантов output, далее человек их сортирует, показывая, какие лучше. Учим Reward Model (RM) - модель-энкодер, которая по тексту говорит, насколько он 👍
3) Сам RL - с помощью PPO учим генератор токенов выдавать такую последовательность, которую предпочтёт RM

Итак, теперь давайте проведём RL-аналогию с Го. Действия - это токены или ходы в игре. Состояние - это контекст - весь уже сгенерированный текст или состояние доски в Го. Награда - в случае текстов это выход из Reward Model, а в Го это простая программа, которая со 100% точностью считает, кто выиграл в конце игры.

В Го мы наблюдаем стандартный феномен - это "NP-задача", в которой элементарно понять, выиграна ли игра в конце, но очень сложно сгенерировать траекторию. На доске в 19x19 клеточек генератор учат на миллионах игр, выжимая из RM кучу информации и пытаясь ей угодить. И несмотря на это, на практике приблизиться к RM невозможно, хотя человека обойти всё же удаётся.

Возвращаемся к текстовому RLHF - чем он отличается от Го? Тут несопоставимо более сложное пространство состояний и действий, чем у настольной игры, то есть разрыв между RM и генератором должен быть более существенный. Да, над разрешением проблемы работают, и Chain of Thoughts / Tree of Thoughts / o1 как раз про это - модель лучше умеет понимать по тексту, хороший ли он, и мы ищем способы вытащить из неё крутые траектории.

Но есть более фундаментальная проблема - может быть, вы догадались, это RM. Представим, что произошло нечто невероятное и наш генератор сравнялся с RM по своей крутости - аналог того, что мы в Го построили бы полное дерево по всем 10^170 состояниям. Давайте подумаем, насколько текстовая RM "крутая" вещь?

Фундаментально, её "крутость" ограничена теми данными, на которых она обучалась. У нас есть размеченный людьми датасет из предпочтений ответов, сгенерированных самим генератором (или может быть людьми в каких-то датасетах). Думаю, можно предполагать, что RM по крутости близка к LLM, делающей вывод о готовом ответе. Измеряется крутость разными вещами - например, по уровню запоминания информации она сильно лучше человека, но далека от самого интернета - иначе бы она хотя бы знала все статьи с arxiv. С логикой и решением новых задач наблюдаются сложности.

На мой взгляд, это вполне легко объясняется - у вас есть огромный трансформер, обучающийся предсказывать крутость текста, причём тексты большие, а сэмплов явно не миллиарды (уже на этапе RLHF). У RM есть 2 варианта - закодировать логический вывод, способность обучаться и человеческий интеллект во всех его проявлениях или выучить простые статистические паттерны того, какие комбинации токенов в каком примерно порядке хорошо, а какие плохо. Наиболее простое решение - второе.

Это очень хорошо видно на тестировании LLM на задаче Монти-Холла. Вы даёте модели любую задачку про 3 двери, машину и 2 козы, а у неё в 99.999% обучающих данных с таким контекстом содержится ответ "выбрать другую дверь". Вот она и выбирает другую дверь, какую бы вы модификацию задачи не дали.

Для того, чтобы модель пользовалась логикой, а не релаксированным запоминанием, нужен другой баланс объёма модели, кол-ва данных и, главное, характера данных - необходимы "adversarial"-образцы, в которых ответ неправильный только из-за логической ошибки, хотя вроде бы последовательность очень близка к верной. Тогда мы, может быть, приблизим LLM к чему-то мыслящему.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/knowledge_accumulator/219

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives?
from in


Telegram Knowledge Accumulator
FROM American