Telegram Group & Telegram Channel
📔 Мы внимательно следим за последними статьями в области ML, и сегодня хотим обратить ваше внимание на модель TabPFN v2 из статьи “Accurate predictions on small data with a tabular foundation model”, опубликованную в январе 2025 года в Nature. Модель работает на табличных данных, первая версия TabPFN была опубликована в октябре 2022, во второй версии помимо классификации появилась регрессия.

💡 Идея TabPFN v2:
В классических алгоритмах для решения suprevised задач на табличных данных модель обучается с нуля, в статье используется подход с предобучением:
1. Генерируются 130 миллионов синтетических датасетов с помощью каузальных графов, которые имитируют сложные зависимости в данных, пропуски, выбросы.
2. На сгенерированных данных предобучается трансформер, предсказывая таргет test выборки, получая на вход train как контекст. Для каждой ячейки таблицы используется отдельная репрезентация. Используется механизм внимания как по строкам, так и по столбцам таблицы.
3. Вместо привычных отдельных "fit" и "predict", трансформер за один проход получая и train, и test новой задачи одновременно, делает инференс на test, используя in-context learning. Простыми словами, модель обучена однажды, но подхватывает зависимости в данных из подаваемого в контекст датасета и сразу делает предсказания.

🥇 Результаты авторов:
1. Скорость и качество: в задачах классификации и регрессии на данных до 10к строк и 500 признаков за несколько секунд получает качество лучше, чем ансамбль из базовых алгоритмов (бустинги, лес, линейные), которые тюнились в течение нескольких часов.
2. Минимум работы: алгоритм не нужно тюнить, имеет отбор признаков, нативно работает с числовыми и категориальными признаками, а также с пропусками.
3. Плюсы foundation моделей: возможность получить распределение таргета, генерировать данные итд.
4. Неплохо показывает себя на временных рядах.

🤔 Выводы:
1. Статья показала эффективность foundation моделей в домене табличных данных, теперь у бустингов сильные конкуренты.
2. Пока есть вопросы с точки зрения эффективности инференса, ограниченности контекста, но дальше будут улучшения.
3. Интересно, что TabPFN v2 можно назвать AutoML решением, ведь для решения задачи он не требует ни настройки гиперпараметров, ни предобработки данных.

Тема интересная, у нас имеются наработки по этой теме, и мы работаем над их применением в LightAutoML🦙, stay tuned!

#обзор
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/lightautoml/182
Create:
Last Update:

📔 Мы внимательно следим за последними статьями в области ML, и сегодня хотим обратить ваше внимание на модель TabPFN v2 из статьи “Accurate predictions on small data with a tabular foundation model”, опубликованную в январе 2025 года в Nature. Модель работает на табличных данных, первая версия TabPFN была опубликована в октябре 2022, во второй версии помимо классификации появилась регрессия.

💡 Идея TabPFN v2:
В классических алгоритмах для решения suprevised задач на табличных данных модель обучается с нуля, в статье используется подход с предобучением:
1. Генерируются 130 миллионов синтетических датасетов с помощью каузальных графов, которые имитируют сложные зависимости в данных, пропуски, выбросы.
2. На сгенерированных данных предобучается трансформер, предсказывая таргет test выборки, получая на вход train как контекст. Для каждой ячейки таблицы используется отдельная репрезентация. Используется механизм внимания как по строкам, так и по столбцам таблицы.
3. Вместо привычных отдельных "fit" и "predict", трансформер за один проход получая и train, и test новой задачи одновременно, делает инференс на test, используя in-context learning. Простыми словами, модель обучена однажды, но подхватывает зависимости в данных из подаваемого в контекст датасета и сразу делает предсказания.

🥇 Результаты авторов:
1. Скорость и качество: в задачах классификации и регрессии на данных до 10к строк и 500 признаков за несколько секунд получает качество лучше, чем ансамбль из базовых алгоритмов (бустинги, лес, линейные), которые тюнились в течение нескольких часов.
2. Минимум работы: алгоритм не нужно тюнить, имеет отбор признаков, нативно работает с числовыми и категориальными признаками, а также с пропусками.
3. Плюсы foundation моделей: возможность получить распределение таргета, генерировать данные итд.
4. Неплохо показывает себя на временных рядах.

🤔 Выводы:
1. Статья показала эффективность foundation моделей в домене табличных данных, теперь у бустингов сильные конкуренты.
2. Пока есть вопросы с точки зрения эффективности инференса, ограниченности контекста, но дальше будут улучшения.
3. Интересно, что TabPFN v2 можно назвать AutoML решением, ведь для решения задачи он не требует ни настройки гиперпараметров, ни предобработки данных.

Тема интересная, у нас имеются наработки по этой теме, и мы работаем над их применением в LightAutoML🦙, stay tuned!

#обзор

BY LightAutoML framework




Share with your friend now:
group-telegram.com/lightautoml/182

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed. "He has to start being more proactive and to find a real solution to this situation, not stay in standby without interfering. It's a very irresponsible position from the owner of Telegram," she said.
from in


Telegram LightAutoML framework
FROM American