Telegram Group & Telegram Channel
Process tracing: выводы о причинно-следственных связях на основе качественных данных

Доказательство причинно-следственных связей в социальных науках у меня всегда ассоциировалось с количественными исследованиями. В опросном эксперименте половине респондентов показали речь политика и им этот политик понравился. Другой половине речь не показали - им политик не понравился. Вывод: речь позитивно влияет на оценку политика. Мы доказали это, изолировав переменную и проверив результат при ее отсутствии.

Однако недавно я познакомился с совершенно гениальным методом process tracing. Он позволяет делать выводы о причинно-следственных связей на основе качественных данных. То есть когда анализируется мало кейсов или всего один.

Суть подхода: последовательно описываем все события связанные с изучаемым явлением и выдвигаем гипотезы о их причинах. Потом собираем данные, чтобы проверить эти гипотезы и по результатам выстраиваем модель причино-следственных связей. Фишка process tracing во фреймворке, который он предлагает для систематизации собранных доказательств:

Straw-in-the-wind test (солома на ветру) - факты, слегка усиливающие или ослабляющие гипотезу, но недостаточные для доказательства или опровержения.

Hoop test (тест обруча) - при прохождении теста гипотеза не подтверждается, но при непрохождении - опровергается.

Smoking-gun test (дымящееся ружье) - факты, полностью доказывающие гипотезу, но при непрохождении не опровергающие ее.

Doubly decisive test (дважды решающий) - доказательства, подтверждающие гипотезу и опровергающие все альтернативные. Чаще всего это комбинация разных тестов, например, имея три конкурирующие гипотезы мы две из них опровергаем с помощью hoop test, а третью подтверждаем через straw-in-the-wind тест.

Для иллюстрации приведу не социологический, но политически важный пример. Допустим, у нас гипотеза: Лукашенко не направил белорусские войска против Украины, чтобы избежать внутриполитических рисков для своей власти.

Количественный подход здесь невозможен: мы не соберем данные 30 аналогичных ситуаций, отличающихся только одним аспектом, например, отношением населения к войне. Поэтому можно анализировать только наш кейс:

1) Факт: большинство белорусов, даже поддерживающих власть, против вступления в войну. Значит наша гипотеза проходит hoop test: нежелание белорусов воевать не доказывает мотивы Лукашенко, но является необходимым условием, если предположить, что он не хотел вызвать народное недовольство.

2) Факт: В прошлом Лукашенко неоднократно действовал ради защиты своей власти. Это не подтверждает гипотезу полностью, но придает ей вес - она проходит straw-in-the-wind тест.

На самом деле в этом примере недостаточно фактов, чтобы понять прошла ли гипотеза doubly decisive test. Это было бы возможно, например, при наличии протокола совета безопасности со словами Лукашенко: "Россия требует нашего вступления в войну, но мы откажемся потому что идеологические работники докладывают, что 80% солдат не будут выполнять такой приказ". Однако пример показывает как классифицируются факты в рамках фреймворка и что в целом возможно делать выводы о причинно-следственных связях без количественных данных.

Я позже приведу пример из прикладной социологии, ведь аналогичным образом можно анализировать, например, данные глубинных интервью, извлекая из них факты и систематически соотнося с наборами альтернативных гипотез.



group-telegram.com/low_theory_raw/760
Create:
Last Update:

Process tracing: выводы о причинно-следственных связях на основе качественных данных

Доказательство причинно-следственных связей в социальных науках у меня всегда ассоциировалось с количественными исследованиями. В опросном эксперименте половине респондентов показали речь политика и им этот политик понравился. Другой половине речь не показали - им политик не понравился. Вывод: речь позитивно влияет на оценку политика. Мы доказали это, изолировав переменную и проверив результат при ее отсутствии.

Однако недавно я познакомился с совершенно гениальным методом process tracing. Он позволяет делать выводы о причинно-следственных связей на основе качественных данных. То есть когда анализируется мало кейсов или всего один.

Суть подхода: последовательно описываем все события связанные с изучаемым явлением и выдвигаем гипотезы о их причинах. Потом собираем данные, чтобы проверить эти гипотезы и по результатам выстраиваем модель причино-следственных связей. Фишка process tracing во фреймворке, который он предлагает для систематизации собранных доказательств:

Straw-in-the-wind test (солома на ветру) - факты, слегка усиливающие или ослабляющие гипотезу, но недостаточные для доказательства или опровержения.

Hoop test (тест обруча) - при прохождении теста гипотеза не подтверждается, но при непрохождении - опровергается.

Smoking-gun test (дымящееся ружье) - факты, полностью доказывающие гипотезу, но при непрохождении не опровергающие ее.

Doubly decisive test (дважды решающий) - доказательства, подтверждающие гипотезу и опровергающие все альтернативные. Чаще всего это комбинация разных тестов, например, имея три конкурирующие гипотезы мы две из них опровергаем с помощью hoop test, а третью подтверждаем через straw-in-the-wind тест.

Для иллюстрации приведу не социологический, но политически важный пример. Допустим, у нас гипотеза: Лукашенко не направил белорусские войска против Украины, чтобы избежать внутриполитических рисков для своей власти.

Количественный подход здесь невозможен: мы не соберем данные 30 аналогичных ситуаций, отличающихся только одним аспектом, например, отношением населения к войне. Поэтому можно анализировать только наш кейс:

1) Факт: большинство белорусов, даже поддерживающих власть, против вступления в войну. Значит наша гипотеза проходит hoop test: нежелание белорусов воевать не доказывает мотивы Лукашенко, но является необходимым условием, если предположить, что он не хотел вызвать народное недовольство.

2) Факт: В прошлом Лукашенко неоднократно действовал ради защиты своей власти. Это не подтверждает гипотезу полностью, но придает ей вес - она проходит straw-in-the-wind тест.

На самом деле в этом примере недостаточно фактов, чтобы понять прошла ли гипотеза doubly decisive test. Это было бы возможно, например, при наличии протокола совета безопасности со словами Лукашенко: "Россия требует нашего вступления в войну, но мы откажемся потому что идеологические работники докладывают, что 80% солдат не будут выполнять такой приказ". Однако пример показывает как классифицируются факты в рамках фреймворка и что в целом возможно делать выводы о причинно-следственных связях без количественных данных.

Я позже приведу пример из прикладной социологии, ведь аналогичным образом можно анализировать, например, данные глубинных интервью, извлекая из них факты и систематически соотнося с наборами альтернативных гипотез.

BY плодотворные дебютные идеи


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/low_theory_raw/760

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.”
from in


Telegram плодотворные дебютные идеи
FROM American