Telegram Group & Telegram Channel
💡 Обучение больших языковых моделей (LLM) — очень дорогое удовольствие.
Но есть ещё одна проблема: выводы с небольших экспериментов почти не помогают предсказать результат на реальных, больших моделях. Это мешает разрабатывать новые подходы и оптимизировать обучение.

🔬 Решение — Farseer: новая улучшенная формула масштабирования, которая точнее прогнозирует, как будет вести себя модель при увеличении объёма данных и числа параметров.

Что делает Farseer?

▪️ Строит точную карту зависимости потерь от размера модели (N) и данных (D)
▪️ Применяет более гибкий способ подгонки (differential piecewise fitting), который справляется даже со сложными графиками ошибок
▪️ Позволяет получать надёжные прогнозы для крупных LLM, снижая ошибку в 4 раза по сравнению с предыдущими подходами (например, законом Чинчиллы)

📊 Проверено на ~1000 моделях и 3 миллионах GPU-часов: новая формула действительно лучше работает на практике и помогает эффективнее масштабировать языковые модели.

Итог:
Farseer помогает предсказывать результат для больших моделей, экономить ресурсы и ускорять разработку — всё благодаря более точной математике и умному учёту зависимости потерь от размера модели и объёма данных.

📌 Читать



group-telegram.com/machinelearning_books/1033
Create:
Last Update:

💡 Обучение больших языковых моделей (LLM) — очень дорогое удовольствие.
Но есть ещё одна проблема: выводы с небольших экспериментов почти не помогают предсказать результат на реальных, больших моделях. Это мешает разрабатывать новые подходы и оптимизировать обучение.

🔬 Решение — Farseer: новая улучшенная формула масштабирования, которая точнее прогнозирует, как будет вести себя модель при увеличении объёма данных и числа параметров.

Что делает Farseer?

▪️ Строит точную карту зависимости потерь от размера модели (N) и данных (D)
▪️ Применяет более гибкий способ подгонки (differential piecewise fitting), который справляется даже со сложными графиками ошибок
▪️ Позволяет получать надёжные прогнозы для крупных LLM, снижая ошибку в 4 раза по сравнению с предыдущими подходами (например, законом Чинчиллы)

📊 Проверено на ~1000 моделях и 3 миллионах GPU-часов: новая формула действительно лучше работает на практике и помогает эффективнее масштабировать языковые модели.

Итог:
Farseer помогает предсказывать результат для больших моделей, экономить ресурсы и ускорять разработку — всё благодаря более точной математике и умному учёту зависимости потерь от размера модели и объёма данных.

📌 Читать

BY Машиннное обучение | Наука о данных Библиотека




Share with your friend now:
group-telegram.com/machinelearning_books/1033

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels.
from in


Telegram Машиннное обучение | Наука о данных Библиотека
FROM American