Telegram Group & Telegram Channel
neuro-october.png
4.6 MB
tasty neuro bci papers - october 2024
[3/4]

Synthetic touch for brain-controlled bionic hands: tactile edges and motion via patterned microstimulation of the human somatosensory cortex

what: complex touch sensations using patterned brain stimulation. Participants felt edges, shapes, and motion.
- Uses multiple electrodes firing in patterns in somatosensory cortex (S1)
- Creates edge and shape sensations
- Controls motion direction and speed
- Winner of BCI AWARD 2024
video: https://youtu.be/ipojAWqTxAA

Measuring instability in chronic human intracortical neural recordings towards stable, long-term brain-computer interfaces

what: metric to track distribution shift
- apply KL divergence for neural recording
- show that it's well correlated with decoder performance.
- good thing to track moment of recalibration.
link: https://www.nature.com/articles/s42003-024-06784-4


Accurate neural control of a hand prosthesis by posture-related activity in the primate grasping circuit

what: hand prosthetic control using neural posture signals instead of traditional velocity. Achieves precision grip control in macaques.
- Uses posture transitions vs standard velocity control
- Works with 3 brain areas (AIP, F5, M1)
- Matches natural hand control patterns
link: https://www.cell.com/neuron/abstract/S0896-6273(24)00688-3

my thoughts

Shift from "feeling dots" to "feeling objects" is amazing. That's like upgrading from morse code to actual writing for touch sensations. For sure, it's not perfect and we have to continue. In my view we should focus on "smart" stimulation. Which can use diverse feedback from participant. Maybe mix of RL and SFT.

Measuring changes in the neural recording is must have in any bci application. KL div is good starting point. however, plots show smooth performance degradation. So potentially we could capture this shift day by day and somehow fix it. For example, it's interesting to consider "stabilizer model" which should to match shifted data into original distribution. Flow matching, diffusion, or just AE with KL loss.



group-telegram.com/neural_cell/204
Create:
Last Update:

tasty neuro bci papers - october 2024
[3/4]

Synthetic touch for brain-controlled bionic hands: tactile edges and motion via patterned microstimulation of the human somatosensory cortex

what: complex touch sensations using patterned brain stimulation. Participants felt edges, shapes, and motion.
- Uses multiple electrodes firing in patterns in somatosensory cortex (S1)
- Creates edge and shape sensations
- Controls motion direction and speed
- Winner of BCI AWARD 2024
video: https://youtu.be/ipojAWqTxAA

Measuring instability in chronic human intracortical neural recordings towards stable, long-term brain-computer interfaces

what: metric to track distribution shift
- apply KL divergence for neural recording
- show that it's well correlated with decoder performance.
- good thing to track moment of recalibration.
link: https://www.nature.com/articles/s42003-024-06784-4


Accurate neural control of a hand prosthesis by posture-related activity in the primate grasping circuit

what: hand prosthetic control using neural posture signals instead of traditional velocity. Achieves precision grip control in macaques.
- Uses posture transitions vs standard velocity control
- Works with 3 brain areas (AIP, F5, M1)
- Matches natural hand control patterns
link: https://www.cell.com/neuron/abstract/S0896-6273(24)00688-3

my thoughts

Shift from "feeling dots" to "feeling objects" is amazing. That's like upgrading from morse code to actual writing for touch sensations. For sure, it's not perfect and we have to continue. In my view we should focus on "smart" stimulation. Which can use diverse feedback from participant. Maybe mix of RL and SFT.

Measuring changes in the neural recording is must have in any bci application. KL div is good starting point. however, plots show smooth performance degradation. So potentially we could capture this shift day by day and somehow fix it. For example, it's interesting to consider "stabilizer model" which should to match shifted data into original distribution. Flow matching, diffusion, or just AE with KL loss.

BY the last neural cell


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/neural_cell/204

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals.
from in


Telegram the last neural cell
FROM American