Telegram Group & Telegram Channel
What does it mean to understand the brain function?
In search of neuroscience paradigms [part 0 - introduction]

A lot of papers are published daily on brain function on multiple levels. What I found interesting is that each study contains an implicit set of assumptions, which are part of a larger research program. Thus, different researchers mean different things when generating scientific insight.

This can lead to vastly different interpretations of the same experimental result. The biggest problem is in my opinion that these assumptions/paradigms are kept implicit and researchers are sometimes not even aware which theories they assume to be true while generating hypotheses and conducting experiments.

I will attempt to bridge this brain-science to "meta-science" gap in the next few posts, of course on the level of a beginner PhD student and from a perspective of a neuroscientist (within rather than above science) that seeks precision and awareness of scientific frameworks we all choose to work on.

Neuroscience is one of the fields with a unique position in this regard - as opposed to physics we really don't have a coherent picture unifying different scales where we established certain laws. We actually rarely have laws and theories that are universally accepted - this is the beauty of being in this field, but also a curse because hot debates are unavoidable.

So, in the next posts I will cover some of the old and emerging theories & frameworks about what it means to understand a biological neural network:

1. "Grandmother cells" & single-neuron frameworks
2. Cell-assemblies & Hebbian associations
3. Embodied & ecological cognition, naturalistic settings
4. Predictive coding & Bayesian brain
5. Feedforward processing & I/O relations, decoding
6. Dynamical systems & population codes
7. Connectomics & structural mapping
8. Computations in electric fields vs spiking
9. Cognitive modules vs distributed processing

What I won't cover for now but maybe will, is the philosophy of scientific insight (realism vs instrumentalism, functional vs mechanistic, reductionist vs holistic, explanation vs description). Also I won't touch AI computations for now, however might do in the future when it becomes more relevant to my research.

Hopefully, after this post series you will gain something valuable to apply to your work. Or you will learn about the existential troubles neuroscientists face, if you're just interested in the field 😉

Which topic would you like to read about first?

P.S. As for the extended read for those interested, here is the paper that stimulated my deeper exploration. Frankly I did not enjoy it too much but it definitely asked the right questions and forced me to try to prove the authors wrong.



group-telegram.com/neural_cell/277
Create:
Last Update:

What does it mean to understand the brain function?
In search of neuroscience paradigms [part 0 - introduction]

A lot of papers are published daily on brain function on multiple levels. What I found interesting is that each study contains an implicit set of assumptions, which are part of a larger research program. Thus, different researchers mean different things when generating scientific insight.

This can lead to vastly different interpretations of the same experimental result. The biggest problem is in my opinion that these assumptions/paradigms are kept implicit and researchers are sometimes not even aware which theories they assume to be true while generating hypotheses and conducting experiments.

I will attempt to bridge this brain-science to "meta-science" gap in the next few posts, of course on the level of a beginner PhD student and from a perspective of a neuroscientist (within rather than above science) that seeks precision and awareness of scientific frameworks we all choose to work on.

Neuroscience is one of the fields with a unique position in this regard - as opposed to physics we really don't have a coherent picture unifying different scales where we established certain laws. We actually rarely have laws and theories that are universally accepted - this is the beauty of being in this field, but also a curse because hot debates are unavoidable.

So, in the next posts I will cover some of the old and emerging theories & frameworks about what it means to understand a biological neural network:

1. "Grandmother cells" & single-neuron frameworks
2. Cell-assemblies & Hebbian associations
3. Embodied & ecological cognition, naturalistic settings
4. Predictive coding & Bayesian brain
5. Feedforward processing & I/O relations, decoding
6. Dynamical systems & population codes
7. Connectomics & structural mapping
8. Computations in electric fields vs spiking
9. Cognitive modules vs distributed processing

What I won't cover for now but maybe will, is the philosophy of scientific insight (realism vs instrumentalism, functional vs mechanistic, reductionist vs holistic, explanation vs description). Also I won't touch AI computations for now, however might do in the future when it becomes more relevant to my research.

Hopefully, after this post series you will gain something valuable to apply to your work. Or you will learn about the existential troubles neuroscientists face, if you're just interested in the field 😉

Which topic would you like to read about first?

P.S. As for the extended read for those interested, here is the paper that stimulated my deeper exploration. Frankly I did not enjoy it too much but it definitely asked the right questions and forced me to try to prove the authors wrong.

BY the last neural cell




Share with your friend now:
group-telegram.com/neural_cell/277

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. "Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted.
from in


Telegram the last neural cell
FROM American