Telegram Group & Telegram Channel
"Каждый раз, когда я увольняю лингвиста, эффективность модели распознавания речи растёт", говорил один из пионеров NLP. Это ранний пример того, что сейчас часто называют "горьким уроком" – наблюдения, что ML-моделям очень мало помогает какое-то специфическое знание о предметной области, но рост величины самой модели, и количества данных для ее тренировки, позволяют увеличивать ее эффективность – и предела такого роста пока еще не видно.

Я не думаю, что этот "урок" полностью отвергает обычную лингвистику как науку. Обратная сторона "горького урока" в том, что ML-модели, в свою очередь, мало рассказывают нам про язык как таковой. Что мы узнали про язык из LLM, помимо очень важного, конечно, но (пока еще?) не очень содержательного результата о том, что такая модель в принципе может существовать, и обладать тем, что со стороны выглядит разнообразными "мыслительными способностями"? Поэтому эти две области, скорее, просто разделяются: лингвисты рассказывают про язык нам, ML-инженеры моделируют его на компьютере, хитроумно подгоняя сложные кривые под обилие данных – общение между ними, скорее, напряженное. Лингвистика может помочь найти и объяснить какие-то странные, упущенные инженерами случаи, покритиковать их достижения, но едва ли – помочь построить саму модель; инженеры удивляют нас своими изобретениями, но мир от них становится только непонятнее.

Вот, скажем, пост про труды Канемана, очень ему симпатизирующий, как и многие комментарии к моему вчерашнему посту. Чем он занимался? На современном языке это что-то вроде "подгонки кривой функции полезности"... Пост намекает на то, что его труды как-то ответили на предположение о максимизации ожидаемой полезности: но это разве так? Экономика продолжается пользоваться этой "аксиомой", каждый раз, конечно, со звездочкой – не потому, что она верна, а потому, что без неё изучать было бы особенно нечего. Конечно, люди не рациональны и полезность не максимизируют, но этот подход создает возможность определенного вида человеческой взаимодействия, экономическое сосуществование, а с ним и любую осмысленную политику, с ним связанную. Точно так же люди делают речевые ошибки, пишут экспериментальные стихи и т.д., но это не опровергает возможность общаться на общем, довольно-таки жёстко удерживаемом правилами языке. Так что как именно Канеман повлиял на экономику? Есть ли какие-нибудь интересные примеры экономических моделей, не построенных фундаментально на максимизации полезности?

Горечь горького урока указывает на то, насколько построение хитроумной статистической модели считается в наше время парадигмой знания, хотя эти модели, скорее, про эффективное незнание. Это круто, когда наука и сложные статистические модели сосуществуют, но когда второе выдается за первое, т.е. слепое моделирование предметной области – за науку о ней, это становится разрушительно для науки, уничтожая/мешая развивать ее фундаментальные понятия, ну и хотя бы просто ставя условных лингвистов под угрозу увольнения. Как именно проходит эта граница, между настоящей "наукой" и просто "моделированием предметной области"? Я думаю, что в этом – главный эпистемологический и эпистемо-политический вопрос 21 века.



group-telegram.com/roguelike_theory/668
Create:
Last Update:

"Каждый раз, когда я увольняю лингвиста, эффективность модели распознавания речи растёт", говорил один из пионеров NLP. Это ранний пример того, что сейчас часто называют "горьким уроком" – наблюдения, что ML-моделям очень мало помогает какое-то специфическое знание о предметной области, но рост величины самой модели, и количества данных для ее тренировки, позволяют увеличивать ее эффективность – и предела такого роста пока еще не видно.

Я не думаю, что этот "урок" полностью отвергает обычную лингвистику как науку. Обратная сторона "горького урока" в том, что ML-модели, в свою очередь, мало рассказывают нам про язык как таковой. Что мы узнали про язык из LLM, помимо очень важного, конечно, но (пока еще?) не очень содержательного результата о том, что такая модель в принципе может существовать, и обладать тем, что со стороны выглядит разнообразными "мыслительными способностями"? Поэтому эти две области, скорее, просто разделяются: лингвисты рассказывают про язык нам, ML-инженеры моделируют его на компьютере, хитроумно подгоняя сложные кривые под обилие данных – общение между ними, скорее, напряженное. Лингвистика может помочь найти и объяснить какие-то странные, упущенные инженерами случаи, покритиковать их достижения, но едва ли – помочь построить саму модель; инженеры удивляют нас своими изобретениями, но мир от них становится только непонятнее.

Вот, скажем, пост про труды Канемана, очень ему симпатизирующий, как и многие комментарии к моему вчерашнему посту. Чем он занимался? На современном языке это что-то вроде "подгонки кривой функции полезности"... Пост намекает на то, что его труды как-то ответили на предположение о максимизации ожидаемой полезности: но это разве так? Экономика продолжается пользоваться этой "аксиомой", каждый раз, конечно, со звездочкой – не потому, что она верна, а потому, что без неё изучать было бы особенно нечего. Конечно, люди не рациональны и полезность не максимизируют, но этот подход создает возможность определенного вида человеческой взаимодействия, экономическое сосуществование, а с ним и любую осмысленную политику, с ним связанную. Точно так же люди делают речевые ошибки, пишут экспериментальные стихи и т.д., но это не опровергает возможность общаться на общем, довольно-таки жёстко удерживаемом правилами языке. Так что как именно Канеман повлиял на экономику? Есть ли какие-нибудь интересные примеры экономических моделей, не построенных фундаментально на максимизации полезности?

Горечь горького урока указывает на то, насколько построение хитроумной статистической модели считается в наше время парадигмой знания, хотя эти модели, скорее, про эффективное незнание. Это круто, когда наука и сложные статистические модели сосуществуют, но когда второе выдается за первое, т.е. слепое моделирование предметной области – за науку о ней, это становится разрушительно для науки, уничтожая/мешая развивать ее фундаментальные понятия, ну и хотя бы просто ставя условных лингвистов под угрозу увольнения. Как именно проходит эта граница, между настоящей "наукой" и просто "моделированием предметной области"? Я думаю, что в этом – главный эпистемологический и эпистемо-политический вопрос 21 века.

BY roguelike theory


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/roguelike_theory/668

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. "Markets were cheering this economic recovery and return to strong economic growth, but the cheers will turn to tears if the inflation outbreak pushes businesses and consumers to the brink of recession," he added. "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world."
from in


Telegram roguelike theory
FROM American