Telegram Group & Telegram Channel
Дмитрий Савостьянов Вещает
Вы ничего не знаете про AI (NLP), если не читали эти 10 статей Выбил себе про-план в опенаи, теперь могу делать дип ресерч с кликбейтными заголовками. Потестил на NLP, звучит разумно. 1. Hochreiter & Schmidhuber (1997) – LSTM. Решает проблему исчезающего…
Вы ничего не знаете про AI (Computer Vision), если не читали эти 10 статей

Мне понравилась предыдущая подборка по NLP, поэтому сделал еще одну. Кажется могу теперь подаваться в SEO’шники.

1. Canny (1986) – A Computational Approach to Edge Detection. Формализовал критерии оптимального обнаружения границ, заложив основу для извлечения признаков в компьютерном зрении. (edge detection, feature extraction)

2. Lowe (2004) – SIFT: Scale-Invariant Feature Transform. Ввел SIFT – алгоритм для поиска ключевых точек, устойчивых к изменению масштаба и повороту. (feature detection, keypoints, matching)

3. LeCun et al. (1998) – LeNet-5. Показал, что сверточные нейросети (CNN) могут превосходить традиционные методы для распознавания изображений. (convolutional neural networks, deep learning)

4. Krizhevsky et al. (2012) – AlexNet. Сделал глубокие нейросети мейнстримом, победив в ImageNet 2012. Ввел ReLU, Dropout и массово использовал GPU. (deep learning, CNN, ImageNet)

5. He et al. (2015) – ResNet: Deep Residual Learning. Ввел остаточные связи, позволив тренировать сети 100+ слоев без проблем деградации градиента. (residual connections, deep networks, architecture design)

6. Redmon et al. (2016) – YOLO: You Only Look Once. Превратил детекцию объектов в единую задачу регрессии, сделав ее в разы быстрее. (real-time object detection, one-stage detectors)

7. Chen et al. (2020) – SimCLR: Self-Supervised Learning. Показал, что модели могут учиться без разметки. (self-supervised learning, contrastive learning, representation learning)

8. Dosovitskiy et al. (2020) – Vision Transformer (ViT). Доказал, что трансформеры работают в CV, исключив CNN блоки. (transformers, self-attention, image classification)

9. Radford et al. (2021) – CLIP: Learning from Images and Text. Соединил NLP и CV, обучив модель понимать изображения через текстовые описания. (vision-language models, multimodal AI, zero-shot learning)

10. Tan & Le (2019) – EfficientNet. Предложил эффективный способ масштабирования нейросетей, получив SOTA-результаты при меньших затратах. (efficient architectures, AutoML, model scaling)



group-telegram.com/savostyanov_dmitry/622
Create:
Last Update:

Вы ничего не знаете про AI (Computer Vision), если не читали эти 10 статей

Мне понравилась предыдущая подборка по NLP, поэтому сделал еще одну. Кажется могу теперь подаваться в SEO’шники.

1. Canny (1986) – A Computational Approach to Edge Detection. Формализовал критерии оптимального обнаружения границ, заложив основу для извлечения признаков в компьютерном зрении. (edge detection, feature extraction)

2. Lowe (2004) – SIFT: Scale-Invariant Feature Transform. Ввел SIFT – алгоритм для поиска ключевых точек, устойчивых к изменению масштаба и повороту. (feature detection, keypoints, matching)

3. LeCun et al. (1998) – LeNet-5. Показал, что сверточные нейросети (CNN) могут превосходить традиционные методы для распознавания изображений. (convolutional neural networks, deep learning)

4. Krizhevsky et al. (2012) – AlexNet. Сделал глубокие нейросети мейнстримом, победив в ImageNet 2012. Ввел ReLU, Dropout и массово использовал GPU. (deep learning, CNN, ImageNet)

5. He et al. (2015) – ResNet: Deep Residual Learning. Ввел остаточные связи, позволив тренировать сети 100+ слоев без проблем деградации градиента. (residual connections, deep networks, architecture design)

6. Redmon et al. (2016) – YOLO: You Only Look Once. Превратил детекцию объектов в единую задачу регрессии, сделав ее в разы быстрее. (real-time object detection, one-stage detectors)

7. Chen et al. (2020) – SimCLR: Self-Supervised Learning. Показал, что модели могут учиться без разметки. (self-supervised learning, contrastive learning, representation learning)

8. Dosovitskiy et al. (2020) – Vision Transformer (ViT). Доказал, что трансформеры работают в CV, исключив CNN блоки. (transformers, self-attention, image classification)

9. Radford et al. (2021) – CLIP: Learning from Images and Text. Соединил NLP и CV, обучив модель понимать изображения через текстовые описания. (vision-language models, multimodal AI, zero-shot learning)

10. Tan & Le (2019) – EfficientNet. Предложил эффективный способ масштабирования нейросетей, получив SOTA-результаты при меньших затратах. (efficient architectures, AutoML, model scaling)

BY Дмитрий Савостьянов Вещает


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/savostyanov_dmitry/622

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said. Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns
from in


Telegram Дмитрий Савостьянов Вещает
FROM American