Telegram Group & Telegram Channel
Революция в анализе текста: LLM против экспертов

Недавнее исследование, проведенное Петтером Тернбергом (2024), сравнило производительность LLM с другими методами аннотации текста на примере определения политической принадлежности авторов сообщений в Twitter. Задача осложнялась тем, что требовала комплексного анализа контекста, иронии и неявных смыслов.

Результаты исследования впечатляют:

LLM превзошли все другие методы, включая экспертов-аналитиков и специализированные модели машинного обучения.

LLM показали высокую точность во всех языках и культурных контекстах, несмотря на то, что обучающие данные были в основном на английском языке и в контексте США.

Анализ ошибок показал, что LLM используют логику, более похожую на человеческую, чем традиционные модели машинного обучения. Вместо простого поиска ключевых слов, LLM способны делать выводы на основе контекста и понимать мотивы автора.

LLM: новые возможности

Снижение затрат и повышение доступности анализа текста.

Новые возможности для сравнительных исследований в разных странах и культурах.

Развитие новых методов анализа, сочетающих качественные и количественные подходы.

Однако LLM также ставят перед нами новые вызовы:

Этические и юридические вопросы, связанные с использованием данных и конфиденциальностью.

Необходимость разработки стандартов и лучших практик для обеспечения надежности, воспроизводимости и этичности исследований.

Эпистемологические вопросы, связанные с природой интерпретации и ролью LLM в научном процессе.

Будущее за LLM?

LLM обладают огромным потенциалом для преобразования социальных наук. Однако важно помнить, что LLM — это всего лишь инструменты. Чтобы использовать их потенциал в полной мере, нам необходимо разработать новые подходы к анализу текста, которые учитывают как возможности, так и ограничения этих мощных технологий.



group-telegram.com/selfmadeLibrary/756
Create:
Last Update:

Революция в анализе текста: LLM против экспертов

Недавнее исследование, проведенное Петтером Тернбергом (2024), сравнило производительность LLM с другими методами аннотации текста на примере определения политической принадлежности авторов сообщений в Twitter. Задача осложнялась тем, что требовала комплексного анализа контекста, иронии и неявных смыслов.

Результаты исследования впечатляют:

LLM превзошли все другие методы, включая экспертов-аналитиков и специализированные модели машинного обучения.

LLM показали высокую точность во всех языках и культурных контекстах, несмотря на то, что обучающие данные были в основном на английском языке и в контексте США.

Анализ ошибок показал, что LLM используют логику, более похожую на человеческую, чем традиционные модели машинного обучения. Вместо простого поиска ключевых слов, LLM способны делать выводы на основе контекста и понимать мотивы автора.

LLM: новые возможности

Снижение затрат и повышение доступности анализа текста.

Новые возможности для сравнительных исследований в разных странах и культурах.

Развитие новых методов анализа, сочетающих качественные и количественные подходы.

Однако LLM также ставят перед нами новые вызовы:

Этические и юридические вопросы, связанные с использованием данных и конфиденциальностью.

Необходимость разработки стандартов и лучших практик для обеспечения надежности, воспроизводимости и этичности исследований.

Эпистемологические вопросы, связанные с природой интерпретации и ролью LLM в научном процессе.

Будущее за LLM?

LLM обладают огромным потенциалом для преобразования социальных наук. Однако важно помнить, что LLM — это всего лишь инструменты. Чтобы использовать их потенциал в полной мере, нам необходимо разработать новые подходы к анализу текста, которые учитывают как возможности, так и ограничения этих мощных технологий.

BY какая-то библиотека


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/selfmadeLibrary/756

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so.
from in


Telegram какая-то библиотека
FROM American