Telegram Group & Telegram Channel
​​Алгоритмы анализа междисциплинарных исследований 

Количественный анализ междисциплинарных исследований имеет значение при оценке степени интеграции различных гипотез, концепций, теорий и методов из двух и более областей специализированного знания.

Одним из наиболее дискуссионных подходов к изучению междисциплинарности исследований является анализ списка источников публикаций. При таком подходе список источников классифицируется по дисциплинам. Как правило, исследователи используют тематические классификаторы (например, предметные категории Web of Science) или распределяют источники по предметным категориям журналов. Такой подход базируется на информации о сходстве или «когнитивной дистанции», т.е. интеграция идей из двух схожих областей будет оказывать меньшее влияние на степень междисциплинарности, чем интеграция из двух несхожих.

Для измерения междисциплинарности публикаций ученые используют показатель разнообразия Стирлинга и/или его усовершенствованные версии. Согласно его концепции, измерение разнообразия опирается на сумму трёх основных факторов:

• Разнообразие (variety) «Разнообразие — это количество категорий, по которым распределены элементы системы и ответ на вопрос: «Сколько у нас типов вещей?».
• Баланс (balance). «Чем более равномерен баланс, тем больше разнообразие».
• Несоответствие (disparity). «Это ответ на вопрос: «Насколько отличаются друг от друга типы вещей, которые у нас есть?» (Stirling A. A, 2007)

Прежде чем приступать к анализу разнообразия и баланса, мы решили проанализировать соответствие предметных областей Citation Topic (Web of Science) и OA concepts (OpenAlex). Список Citation Topic разделяется на макро-, мезо- и микро-уровень. Микро-уровень, который мы решили рассматривать, насчитывает 2488 областей — это, пожалуй, один из самых подробных классификаторов после списка концепций OpenAlex, который содержит более 65 тысяч предметных областей пяти различных уровней. Однако только для 1871 микро-области (75%) Citation Topic нашлось достаточно точное соответствие из списка концепций OpenAlex.

Напомним, что концепции OpenAlex присваиваются публикациям автоматически на основании названия журнала, заголовка и аннотации статьи. Каждой публикации присваивается несколько концепций, а для каждой концепции указывается балл связи (score) от 0 до 1, который свидетельствует о том, с какой вероятностью статья относится к указанной предметной области.

Для анализа был взят набор из всех российских публикаций за 2023 год. В Web of Science их количество составило 40 126, в OpenAlex — 109 420. Было решено найти пересечение по DOI, и объем итогового массива составил 32 355 публикаций. Для этих публикаций были добавлены Citation Topic Micro и все концепции OA с баллом связи. Оказалось, что для большей части (26 854, или 83%) предметные области по этим классификаторам вообще не пересекаются. Результаты по оставшимся оказались, как и ожидалось, достаточно неплохими: медианное значение балла связи составило 0,65.

Итак, несмотря на то, что 75% Citation Topic Micro имеют одно или даже несколько соответствий среди концепций OpenAlex, на реальном массиве данных всего 17% статей имеют частичное совпадение в классификации.

Таким образом, применение разных типов распределения на предметные категории (Citation topics — алгоритм Лейдена, OpenAlex — Microsoft Academic Graph) будет значительно отражаться на результатах количественной оценки междисциплинарности.

#webofscience #openalex #citationtopic #междисциплинарность
👍144🔥4🤔2



group-telegram.com/HQhse/327
Create:
Last Update:

​​Алгоритмы анализа междисциплинарных исследований 

Количественный анализ междисциплинарных исследований имеет значение при оценке степени интеграции различных гипотез, концепций, теорий и методов из двух и более областей специализированного знания.

Одним из наиболее дискуссионных подходов к изучению междисциплинарности исследований является анализ списка источников публикаций. При таком подходе список источников классифицируется по дисциплинам. Как правило, исследователи используют тематические классификаторы (например, предметные категории Web of Science) или распределяют источники по предметным категориям журналов. Такой подход базируется на информации о сходстве или «когнитивной дистанции», т.е. интеграция идей из двух схожих областей будет оказывать меньшее влияние на степень междисциплинарности, чем интеграция из двух несхожих.

Для измерения междисциплинарности публикаций ученые используют показатель разнообразия Стирлинга и/или его усовершенствованные версии. Согласно его концепции, измерение разнообразия опирается на сумму трёх основных факторов:

• Разнообразие (variety) «Разнообразие — это количество категорий, по которым распределены элементы системы и ответ на вопрос: «Сколько у нас типов вещей?».
• Баланс (balance). «Чем более равномерен баланс, тем больше разнообразие».
• Несоответствие (disparity). «Это ответ на вопрос: «Насколько отличаются друг от друга типы вещей, которые у нас есть?» (Stirling A. A, 2007)

Прежде чем приступать к анализу разнообразия и баланса, мы решили проанализировать соответствие предметных областей Citation Topic (Web of Science) и OA concepts (OpenAlex). Список Citation Topic разделяется на макро-, мезо- и микро-уровень. Микро-уровень, который мы решили рассматривать, насчитывает 2488 областей — это, пожалуй, один из самых подробных классификаторов после списка концепций OpenAlex, который содержит более 65 тысяч предметных областей пяти различных уровней. Однако только для 1871 микро-области (75%) Citation Topic нашлось достаточно точное соответствие из списка концепций OpenAlex.

Напомним, что концепции OpenAlex присваиваются публикациям автоматически на основании названия журнала, заголовка и аннотации статьи. Каждой публикации присваивается несколько концепций, а для каждой концепции указывается балл связи (score) от 0 до 1, который свидетельствует о том, с какой вероятностью статья относится к указанной предметной области.

Для анализа был взят набор из всех российских публикаций за 2023 год. В Web of Science их количество составило 40 126, в OpenAlex — 109 420. Было решено найти пересечение по DOI, и объем итогового массива составил 32 355 публикаций. Для этих публикаций были добавлены Citation Topic Micro и все концепции OA с баллом связи. Оказалось, что для большей части (26 854, или 83%) предметные области по этим классификаторам вообще не пересекаются. Результаты по оставшимся оказались, как и ожидалось, достаточно неплохими: медианное значение балла связи составило 0,65.

Итак, несмотря на то, что 75% Citation Topic Micro имеют одно или даже несколько соответствий среди концепций OpenAlex, на реальном массиве данных всего 17% статей имеют частичное совпадение в классификации.

Таким образом, применение разных типов распределения на предметные категории (Citation topics — алгоритм Лейдена, OpenAlex — Microsoft Academic Graph) будет значительно отражаться на результатах количественной оценки междисциплинарности.

#webofscience #openalex #citationtopic #междисциплинарность

BY Выше квартилей




Share with your friend now:
group-telegram.com/HQhse/327

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. "Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted. Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open.
from it


Telegram Выше квартилей
FROM American