Telegram Group & Telegram Channel
дайджест комментариев: разбиения на доминошки

коллеги, спасибо большое за содержательные комментарии и вообще

1.
С.Шашков сделал веб-версию перемешивания ацтекского брильянта: https://shashkovs.ru/i/Aztec.html

Нравится и как конкретно это выглядит, и вообще идея превращения таких программ в веб-страницы — особ. удобно, если хочется поделиться на кружке, докладе и т.п.

Переход от несложного питона к джаваскрипту выглядит посильным — мб попробую при случае что-то сделать и на джаваскрипте.

2.
Л.Петров обращает внимание на то, что случайное разбиение ацтекского брильянта на доминошки радикально быстрее генерировать не применяя много случайных флипов, а при помощи domino shuffling.

В качестве популярного введения — советую видео https://youtu.be/Yy7Q8IWNfHM Mathologer'а. Для тех, кто читал брошюру Е.Смирнова про ацтекские брильянты, — это примерно то же, что описанное там «расширение площадей».

3.
Р.Гусарев напоминает, что разбиения квадрата 8×8 на доминошки намного быстрее считать не в лоб, а «динамикой по профилю».

Эту идею давайте в таком виде упакую. Если считать просто разбиения прямоугольника, say, 3×N, то эти числа P(n) никакой очевидной рекурренте не удовлетворяют. Почему? Ну просто потому, что если мы выкидываем все доминошки, покрывающие последний столбец, то остается не прямоугольник, а прямоугольник с дырками в самом правом столбце. Но это значит, что если думать про тройку (P(n),Q(n),P(n-1),Q(n-1)), где Q(n) — количество разбиений прямоугольника 3×N без верхней правой клетки, P(n-1) — количество разбиений без всего правого столбца, S(n-1) — только с одной клеткой в самом правом столбце, то следующая четверка линейно выражается через предыдущую!

Реализовал это вот так (и теперь, действительно, даже разбиения прямоугольника 8×64 считаются мгновенно):

def is_good(mask,n):
# mask кодирует последовательность из n нулей и единиц
# функция проверяет, можно ли замостить нули доминошками
if mask == 0:
return n%2 == 0
if mask%4 == 0:
return is_good(mask>>2,n-2)
if mask%4 == 2:
return False
return is_good(mask>>1,n-1)

def tilings(n,m):
ext = [ [1 if mask&perp==0 and is_good(mask+perp,n) else 0
for perp in range(2**n)] for mask in range(2**n)]
# ext[mask][perp]: можно ли положить перпендикулярные
# нашему ряду доминошки, чтобы не задеть маску,
# а остаток чтобы разбился на доминошки в ряду
ans = [1 if mask==0 else 0 for mask in range(2**n)]
for _ in range(m):
newans = [0] * (2**n)
for mask in range(2**n):
for oldmask in range(2**n):
newans[mask] += ext[mask][oldmask]*ans[oldmask]
# видно, что шаг есть умножение матрицы на вектор
ans = newans
return ans[0]

print(tilings(8,64))



group-telegram.com/compmathweekly/17
Create:
Last Update:

дайджест комментариев: разбиения на доминошки

коллеги, спасибо большое за содержательные комментарии и вообще

1.
С.Шашков сделал веб-версию перемешивания ацтекского брильянта: https://shashkovs.ru/i/Aztec.html

Нравится и как конкретно это выглядит, и вообще идея превращения таких программ в веб-страницы — особ. удобно, если хочется поделиться на кружке, докладе и т.п.

Переход от несложного питона к джаваскрипту выглядит посильным — мб попробую при случае что-то сделать и на джаваскрипте.

2.
Л.Петров обращает внимание на то, что случайное разбиение ацтекского брильянта на доминошки радикально быстрее генерировать не применяя много случайных флипов, а при помощи domino shuffling.

В качестве популярного введения — советую видео https://youtu.be/Yy7Q8IWNfHM Mathologer'а. Для тех, кто читал брошюру Е.Смирнова про ацтекские брильянты, — это примерно то же, что описанное там «расширение площадей».

3.
Р.Гусарев напоминает, что разбиения квадрата 8×8 на доминошки намного быстрее считать не в лоб, а «динамикой по профилю».

Эту идею давайте в таком виде упакую. Если считать просто разбиения прямоугольника, say, 3×N, то эти числа P(n) никакой очевидной рекурренте не удовлетворяют. Почему? Ну просто потому, что если мы выкидываем все доминошки, покрывающие последний столбец, то остается не прямоугольник, а прямоугольник с дырками в самом правом столбце. Но это значит, что если думать про тройку (P(n),Q(n),P(n-1),Q(n-1)), где Q(n) — количество разбиений прямоугольника 3×N без верхней правой клетки, P(n-1) — количество разбиений без всего правого столбца, S(n-1) — только с одной клеткой в самом правом столбце, то следующая четверка линейно выражается через предыдущую!

Реализовал это вот так (и теперь, действительно, даже разбиения прямоугольника 8×64 считаются мгновенно):


def is_good(mask,n):
# mask кодирует последовательность из n нулей и единиц
# функция проверяет, можно ли замостить нули доминошками
if mask == 0:
return n%2 == 0
if mask%4 == 0:
return is_good(mask>>2,n-2)
if mask%4 == 2:
return False
return is_good(mask>>1,n-1)

def tilings(n,m):
ext = [ [1 if mask&perp==0 and is_good(mask+perp,n) else 0
for perp in range(2**n)] for mask in range(2**n)]
# ext[mask][perp]: можно ли положить перпендикулярные
# нашему ряду доминошки, чтобы не задеть маску,
# а остаток чтобы разбился на доминошки в ряду
ans = [1 if mask==0 else 0 for mask in range(2**n)]
for _ in range(m):
newans = [0] * (2**n)
for mask in range(2**n):
for oldmask in range(2**n):
newans[mask] += ext[mask][oldmask]*ans[oldmask]
# видно, что шаг есть умножение матрицы на вектор
ans = newans
return ans[0]

print(tilings(8,64))

BY Компьютерная математика Weekly




Share with your friend now:
group-telegram.com/compmathweekly/17

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare. Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market.
from it


Telegram Компьютерная математика Weekly
FROM American