Telegram Group & Telegram Channel
🖥 Задача: "Оптимизация вероятности успеха в стохастической системе"

📌 Условие:

Вы работаете над системой, где каждый эксперимент (тест, запуск модели, продукт) может быть успешным или неуспешным.
Результат одного запуска — 1 (успех) или 0 (провал).

Известно:

- Вероятность успеха одного эксперимента — неизвестна, обозначим её как p.
- У вас есть N исторических наблюдений: x1, x2, ..., xN, где каждое xi равно 0 или 1.

Вопросы:

1. Построить оценку вероятности успеха p и доверительный интервал на уровне 95%.
2. Рассчитать, сколько экспериментов нужно запустить, чтобы вероятность выхода в прибыль была выше 95%, учитывая:
- стоимость одного запуска C;
- прибыль от одного успешного эксперимента R.

---

▪️ Подсказки:

- Для оценки p используйте биномиальную модель.
- Для доверительного интервала:
- Можно использовать нормальное приближение (если выборка большая),
- Или Wilson-интервал для аккуратности.

---

▪️ Что оценивается:

- Правильная работа с вероятностями и доверием.
- Способность адекватно аппроксимировать биномиальные распределения.
- Чистота и практичность вычислений.

---

▪️ Разбор возможного решения:

▪️ 1. Оценка вероятности успеха:


# p_hat - оценка вероятности успеха
p_hat = sum(xi_list) / N


где xi_list — список из 0 и 1 (результаты экспериментов).

▪️ 2. Доверительный интервал через нормальное приближение:


import math
z = 1.96 # для 95% доверия
std_error = math.sqrt(p_hat * (1 - p_hat) / N)
lower_bound = p_hat - z * std_error
upper_bound = p_hat + z * std_error


▪️ 3. Wilson-интервал (более аккуратный):


z = 1.96 # для 95% доверия
center = (p_hat + z**2 / (2 * N)) / (1 + z**2 / N)
margin = (z * math.sqrt((p_hat * (1 - p_hat) / N) + (z**2 / (4 * N**2)))) / (1 + z**2 / N)
lower_bound = center - margin
upper_bound = center + margin


---

▪️ 4. Прибыльность эксперимента:

Формула прибыли при n экспериментах:


profit = successes * R - n * C


Требуется:


P(profit > 0) >= 0.95


Число успехов должно быть больше определённой границы:


min_successes = (n * C) / R


Если n велико, количество успехов приближается к нормальному распределению:


mean_successes = n * p_hat
std_successes = math.sqrt(n * p_hat * (1 - p_hat))


Для нормального приближения можно написать:


# Вероятность успешности через нормальное распределение
from scipy.stats import norm

# Вероятность, что количество успехов больше нужного
prob = 1 - norm.cdf(min_successes, loc=mean_successes, scale=std_successes)


Тогда перебором или через уравнение ищем минимальное n, чтобы prob >= 0.95.

---

▪️ Возможные подводные камни:

- Нельзя использовать нормальное приближение при малом N — нужна биномиальная модель.
- Неверное задание границ доверительного интервала может привести к неправильной стратегии запуска.
- Плохое понимание соотношения C и R приводит к ошибочным выводам об окупаемости.

---

📌Дополнительные вопросы:

- Как бы вы учли, что прибыль от успеха — случайная величина?
- Как пересчитать стратегии, если вероятность успеха зависит от времени (`p = f(t)`)?
- Как применить байесовский апдейт для оценки вероятности успеха?

---
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/data_math/761
Create:
Last Update:

🖥 Задача: "Оптимизация вероятности успеха в стохастической системе"

📌 Условие:

Вы работаете над системой, где каждый эксперимент (тест, запуск модели, продукт) может быть успешным или неуспешным.
Результат одного запуска — 1 (успех) или 0 (провал).

Известно:

- Вероятность успеха одного эксперимента — неизвестна, обозначим её как p.
- У вас есть N исторических наблюдений: x1, x2, ..., xN, где каждое xi равно 0 или 1.

Вопросы:

1. Построить оценку вероятности успеха p и доверительный интервал на уровне 95%.
2. Рассчитать, сколько экспериментов нужно запустить, чтобы вероятность выхода в прибыль была выше 95%, учитывая:
- стоимость одного запуска C;
- прибыль от одного успешного эксперимента R.

---

▪️ Подсказки:

- Для оценки p используйте биномиальную модель.
- Для доверительного интервала:
- Можно использовать нормальное приближение (если выборка большая),
- Или Wilson-интервал для аккуратности.

---

▪️ Что оценивается:

- Правильная работа с вероятностями и доверием.
- Способность адекватно аппроксимировать биномиальные распределения.
- Чистота и практичность вычислений.

---

▪️ Разбор возможного решения:

▪️ 1. Оценка вероятности успеха:


# p_hat - оценка вероятности успеха
p_hat = sum(xi_list) / N


где xi_list — список из 0 и 1 (результаты экспериментов).

▪️ 2. Доверительный интервал через нормальное приближение:


import math
z = 1.96 # для 95% доверия
std_error = math.sqrt(p_hat * (1 - p_hat) / N)
lower_bound = p_hat - z * std_error
upper_bound = p_hat + z * std_error


▪️ 3. Wilson-интервал (более аккуратный):


z = 1.96 # для 95% доверия
center = (p_hat + z**2 / (2 * N)) / (1 + z**2 / N)
margin = (z * math.sqrt((p_hat * (1 - p_hat) / N) + (z**2 / (4 * N**2)))) / (1 + z**2 / N)
lower_bound = center - margin
upper_bound = center + margin


---

▪️ 4. Прибыльность эксперимента:

Формула прибыли при n экспериментах:


profit = successes * R - n * C


Требуется:


P(profit > 0) >= 0.95


Число успехов должно быть больше определённой границы:


min_successes = (n * C) / R


Если n велико, количество успехов приближается к нормальному распределению:


mean_successes = n * p_hat
std_successes = math.sqrt(n * p_hat * (1 - p_hat))


Для нормального приближения можно написать:


# Вероятность успешности через нормальное распределение
from scipy.stats import norm

# Вероятность, что количество успехов больше нужного
prob = 1 - norm.cdf(min_successes, loc=mean_successes, scale=std_successes)


Тогда перебором или через уравнение ищем минимальное n, чтобы prob >= 0.95.

---

▪️ Возможные подводные камни:

- Нельзя использовать нормальное приближение при малом N — нужна биномиальная модель.
- Неверное задание границ доверительного интервала может привести к неправильной стратегии запуска.
- Плохое понимание соотношения C и R приводит к ошибочным выводам об окупаемости.

---

📌Дополнительные вопросы:

- Как бы вы учли, что прибыль от успеха — случайная величина?
- Как пересчитать стратегии, если вероятность успеха зависит от времени (`p = f(t)`)?
- Как применить байесовский апдейт для оценки вероятности успеха?

---

BY Математика Дата саентиста


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/data_math/761

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. "Markets were cheering this economic recovery and return to strong economic growth, but the cheers will turn to tears if the inflation outbreak pushes businesses and consumers to the brink of recession," he added. The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides.
from it


Telegram Математика Дата саентиста
FROM American