Telegram Group & Telegram Channel
Весёлый поиск от Deepmind [2023]

Новость про "первое открытие LLM в математике" взбудоражило публику. Статья очень интересная, но её стоит воспринимать в широком контексте, который я и постараюсь дать.

Есть такая сфера, как оптимизация/поиск программ - мы задаём набор базовых команд и ищем их последовательность, дающую максимальный профит на задаче. Я уже разбирал AutoML-Zero, в которой ищут последовательность векторно-матричных операций, максимизирующую точность нейросети, обученной с её помощью. Тот же подход использовали для создания оптимизатора Lion.

Работает это всё в форме генетического алгоритма. Мы можем легко оценить качество конкретной программы, и у нас есть популяция программ, из которых пробуем создавать новые программы с помощью мутаций. В AutoML-Zero / Lion мутации были случайные - мы добавляли / изменяли / удаляли случайную команду в ней. А это слишком неэффективно и глупо.

Новизна FunSearch именно в том, что авторы нашли способ генерировать мутации сильно лучше, чем рандомно - как раз с помощью LLM. Модели на вход подают контекст задачи и две уже существующие программы, и просят "придумать на их основе более удачную" - это по факту просьба "скрести и добавь мутацию". В результате, генетический алгоритм оптимизирует результат гораздо лучше.

Притом, что сгенерировать такую мутацию гораздо сложнее вычислительно, прирост эффективности и потолок результата выше засчёт того, что мутация с помощью LLM происходит в гораздо более разумном пространстве программ. В статье можно найти сравнение FunSearch и аналога AutoML-Zero, который не смог найти такие же крутые программы.

Добавлю, что есть и альтернатива генетике - это AlphaZero-подход, а именно AlphaTensor и AlphaDev, на счету которых тоже уже есть открытия. При этом важно, что область применения и AlphaZero, и FunSearch весьма специфична, так что, сингулярность ещё не близко.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/139
Create:
Last Update:

Весёлый поиск от Deepmind [2023]

Новость про "первое открытие LLM в математике" взбудоражило публику. Статья очень интересная, но её стоит воспринимать в широком контексте, который я и постараюсь дать.

Есть такая сфера, как оптимизация/поиск программ - мы задаём набор базовых команд и ищем их последовательность, дающую максимальный профит на задаче. Я уже разбирал AutoML-Zero, в которой ищут последовательность векторно-матричных операций, максимизирующую точность нейросети, обученной с её помощью. Тот же подход использовали для создания оптимизатора Lion.

Работает это всё в форме генетического алгоритма. Мы можем легко оценить качество конкретной программы, и у нас есть популяция программ, из которых пробуем создавать новые программы с помощью мутаций. В AutoML-Zero / Lion мутации были случайные - мы добавляли / изменяли / удаляли случайную команду в ней. А это слишком неэффективно и глупо.

Новизна FunSearch именно в том, что авторы нашли способ генерировать мутации сильно лучше, чем рандомно - как раз с помощью LLM. Модели на вход подают контекст задачи и две уже существующие программы, и просят "придумать на их основе более удачную" - это по факту просьба "скрести и добавь мутацию". В результате, генетический алгоритм оптимизирует результат гораздо лучше.

Притом, что сгенерировать такую мутацию гораздо сложнее вычислительно, прирост эффективности и потолок результата выше засчёт того, что мутация с помощью LLM происходит в гораздо более разумном пространстве программ. В статье можно найти сравнение FunSearch и аналога AutoML-Zero, который не смог найти такие же крутые программы.

Добавлю, что есть и альтернатива генетике - это AlphaZero-подход, а именно AlphaTensor и AlphaDev, на счету которых тоже уже есть открытия. При этом важно, что область применения и AlphaZero, и FunSearch весьма специфична, так что, сингулярность ещё не близко.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/139

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said.
from it


Telegram Knowledge Accumulator
FROM American