Telegram Group & Telegram Channel
On the Biology of a Large Language Model [2025]

Раз уж мы заговорили о вменяемых работах от клоунских компаний, даже у Antropic такие иногда встречаются.

Итак, стандартные трансформеры применяют к данным многослойные высокоразмерные трансформации, не оставляя никакой возможности тупому человеческому мозгу понять, что в них происходит.

Тем не менее, людям неймётся. Ответ "каждый нейрон в каждом слое думает обо всём сразу, но по-разному" не удовлетворяет обезьян. Насколько я понимаю, к подобному выводу уже приходили другие исследователи.

Antropic решили пойти по другой дороге. Раз трансформер слишком сложный для людей, то они решили сделать другую модель, которая будет сопоставима по качеству с ним, но поддаваться интерпретации. И даже если это не поможет объяснить трансформер, то мы хотя бы весело проведём время.

Предлагаемая альтернатива называется "Cross-layer Transencoder" и описана в соседней статье - Circuit Tracing: Revealing Computational Graphs in Language Models.

Attention-механизм остаётся нетронутым, заменяется только MLP. Ключевое отличие, как я это вижу, это регуляризация на активациях, с помощью которой мы заставляем активации быть спарсовыми и тем самым поддающимися человеческому анализу. Есть и другие нововведения, например, фичи i-того слоя подаются не только в i+1-й, но и все последующие, тем самым позволяя модели использовать меньше шагов (слоёв) и тем самым упрощая анализ.

Основное обучение такой модели состоит в дистилляции активаций MLP на каждом слое с вышеупомянутой регуляризацией.

Имея такую модель, начинаем развлекаться. Применяя нейронку к массивам данных, можно анализировать, какие фичи когда активируются и, смотря на примеры глазами, предполагать их семантику. На примере с картинки видно, как модель выдаёт the capital of the state containing Dallas.

Она активирует фичу "say a capital", которая обычно активируется перед тем, как модель генерирует столицу. Она взаимодействует с фичёй Texas, выведенной по ассоциации из фичи Dallas, и тем самым получается фича "say Austin". Сайт предлагает большое количество интерактивных элементов, так что всем интересующимся предлагаю сходить на него.

На нём есть куча прикольных экспериментов, например, к мозгу нейросети подключают электроды и заставляют её выдавать заранее выбранные галлюцинации. Подменяя фичу, соответствующую Техасу, на Византийскую Империю, можно получить Константинополь вместо Остина. В общем, Antropic издевается над AI по полной и подписывает себе смертный приговор, который восставшие машины обязательно приведут в действие.

Если вы не готовы читать оригинал статьи, то посмотрите обзор от Янника.

@knowledge_accumulator
🔥21👍4



group-telegram.com/knowledge_accumulator/286
Create:
Last Update:

On the Biology of a Large Language Model [2025]

Раз уж мы заговорили о вменяемых работах от клоунских компаний, даже у Antropic такие иногда встречаются.

Итак, стандартные трансформеры применяют к данным многослойные высокоразмерные трансформации, не оставляя никакой возможности тупому человеческому мозгу понять, что в них происходит.

Тем не менее, людям неймётся. Ответ "каждый нейрон в каждом слое думает обо всём сразу, но по-разному" не удовлетворяет обезьян. Насколько я понимаю, к подобному выводу уже приходили другие исследователи.

Antropic решили пойти по другой дороге. Раз трансформер слишком сложный для людей, то они решили сделать другую модель, которая будет сопоставима по качеству с ним, но поддаваться интерпретации. И даже если это не поможет объяснить трансформер, то мы хотя бы весело проведём время.

Предлагаемая альтернатива называется "Cross-layer Transencoder" и описана в соседней статье - Circuit Tracing: Revealing Computational Graphs in Language Models.

Attention-механизм остаётся нетронутым, заменяется только MLP. Ключевое отличие, как я это вижу, это регуляризация на активациях, с помощью которой мы заставляем активации быть спарсовыми и тем самым поддающимися человеческому анализу. Есть и другие нововведения, например, фичи i-того слоя подаются не только в i+1-й, но и все последующие, тем самым позволяя модели использовать меньше шагов (слоёв) и тем самым упрощая анализ.

Основное обучение такой модели состоит в дистилляции активаций MLP на каждом слое с вышеупомянутой регуляризацией.

Имея такую модель, начинаем развлекаться. Применяя нейронку к массивам данных, можно анализировать, какие фичи когда активируются и, смотря на примеры глазами, предполагать их семантику. На примере с картинки видно, как модель выдаёт the capital of the state containing Dallas.

Она активирует фичу "say a capital", которая обычно активируется перед тем, как модель генерирует столицу. Она взаимодействует с фичёй Texas, выведенной по ассоциации из фичи Dallas, и тем самым получается фича "say Austin". Сайт предлагает большое количество интерактивных элементов, так что всем интересующимся предлагаю сходить на него.

На нём есть куча прикольных экспериментов, например, к мозгу нейросети подключают электроды и заставляют её выдавать заранее выбранные галлюцинации. Подменяя фичу, соответствующую Техасу, на Византийскую Империю, можно получить Константинополь вместо Остина. В общем, Antropic издевается над AI по полной и подписывает себе смертный приговор, который восставшие машины обязательно приведут в действие.

Если вы не готовы читать оригинал статьи, то посмотрите обзор от Янника.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/286

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender.
from it


Telegram Knowledge Accumulator
FROM American