Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 MetaShuffling ΠΎΡ‚ PyTorch: ускоряСм Π²Ρ‹Π²ΠΎΠ΄ Llama 4 MoE Π±Π΅Π· Π»ΠΈΡˆΠ½ΠΈΡ… вычислСний ΠΈ Π·Π°Π΄Π΅Ρ€ΠΆΠ΅ΠΊ.

PyTorch прСдставил MetaShuffling β€” Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ для ускорСния Π²Ρ‹Π²ΠΎΠ΄Π° Π² Llama 4 MoE, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ Π΄ΠΈΠ½Π°ΠΌΠΈΠ·ΠΌΠ° ΠΈ разрСТСнности ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, связанных с ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ Ρ‚ΠΎΠΊΠ΅Π½ΠΎΠ². ВмСсто Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² padding ΠΈΠ»ΠΈ slicing, MetaShuffling ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ пСрСупорядочиваниС Ρ‚ΠΎΠΊΠ΅Π½ΠΎΠ² ΠΏΠΎ экспСртам, избавляясь ΠΎΡ‚ Π½Π΅Π½ΡƒΠΆΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ ΠΈ синхронизации ΠΌΠ΅ΠΆΠ΄Ρƒ CPU ΠΈ GPU. Π­Ρ‚ΠΎ сниТаСт использованиС памяти ΠΈ устраняСт Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ, связанныС с ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ Β«ΠΏΡƒΡΡ‚Ρ‹ΡˆΠ΅ΠΊΒ» ΠΈΠ»ΠΈ мноТСствСнными запусками ядСр.

Π’ основС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ - идСя Π³Ρ€ΡƒΠΏΠΏΠΈΡ€ΠΎΠ²ΠΊΠΈ Ρ‚ΠΎΠΊΠ΅Π½ΠΎΠ², Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΠ΄Π½ΠΎΠΌΡƒ экспСрту, Π² Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ Π±Π»ΠΎΠΊΠΈ. Π’Π°ΠΊΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ dense tensors вмСсто Ρ€Π°Π·Ρ€Π΅ΠΆΠ΅Π½Π½Ρ‹Ρ… структур, сохраняя статичныС Ρ„ΠΎΡ€ΠΌΡ‹ Π΄Π°Π½Π½Ρ‹Ρ….

Благодаря этому MetaShuffling совмСстим с ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ Π³Ρ€Π°Ρ„ΠΎΠ² (CUDAGraph, torch.compile), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΡΠΊΠΎΡ€ΡΡŽΡ‚ исполнСниС, избСгая ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½Ρ‹Ρ… синхронизаций. РСшСниС особСнно эффСктивно для Llama 4, Π³Π΄Π΅ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ MoE-слой Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅Ρ‚ лишь Ρ‡Π°ΡΡ‚ΡŒ экспСртов, Ρ‡Ρ‚ΠΎ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ создаСт динамичСскиС Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ.

β–ΆοΈΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹ΠΌΠΈ инновациями стали оптимизация ядСр GroupedGEMM ΠΈ IndexShuffling:

🟒GroupedGEMM, написанный Π½Π° Triton, ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅Ρ‚ нСсколько ΠΌΠ°Ρ‚Ρ€ΠΈΡ† Π² ΠΎΠ΄Π½ΠΎΠΌ Π²Ρ‹Π·ΠΎΠ²Π΅, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ статичСскиС ΠΈ динамичСскиС разбиСния Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ², позволяя ΠΏΡ€ΠΎΠΏΡƒΡΠΊΠ°Ρ‚ΡŒ Π½Π΅Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… экспСртов ΠΈ «лишниС» Ρ‚ΠΎΠΊΠ΅Π½Ρ‹ Π±Π΅Π· Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Ρ‚Ρ€Π°Ρ‚.

🟒IndexShuffling, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, выполняСт сортировку Ρ‚ΠΎΠΊΠ΅Π½ΠΎΠ² ΠΈ подсчСт ΠΈΡ… количСства Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ экспСртС Π·Π° ΠΎΠ΄ΠΈΠ½ ΠΏΡ€ΠΎΡ…ΠΎΠ΄, Ρ‡Ρ‚ΠΎ ΠΏΠΎ тСстам оказалось Π² 5–13 Ρ€Π°Π· быстрСС, Ρ‡Π΅ΠΌ стандартныС Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ PyTorch.

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ экспСримСнтов Π½Π° H100 80GB выглядят ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±Π΅Ρ‰Π°ΡŽΡ‰ΠΈΠΌΠΈ.

Prefill Llama 4 Maverick с FP8 GroupedGEMM достигаСт 1,197 TFlops ΠΏΡ€ΠΈ 286 мкс, Ρ‡Ρ‚ΠΎ Π±Π»ΠΈΠ·ΠΊΠΎ ΠΊ тСорСтичСскому ΠΏΡ€Π΅Π΄Π΅Π»Ρƒ GPU.

Π’ Π·Π°Π΄Π°Ρ‡Π°Ρ… дСкодирования ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ: 44,88 TFlops Π·Π° 59 мкс. Π”Π°ΠΆΠ΅ ΠΏΡ€ΠΈ ΠΌΠ°Π»ΠΎΠΌ количСствС Ρ‚ΠΎΠΊΠ΅Π½ΠΎΠ² (128) MetaShuffling ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ 80% использования пропускной способности памяти.

Для multi-host сцСнариСв MetaShuffling ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ Π³ΠΈΠ±ΠΊΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ «динамичСскими» ΠΈ «статичными» Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈ Π΄Π°Π½Π½Ρ‹Ρ…. Π’ Ρ€Π΅ΠΆΠΈΠΌΠ΅ eager (Π±Π΅Π· Π³Ρ€Π°Ρ„ΠΎΠ²) ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ минимальноС Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π±Π΅Π· синхронизации CPU-GPU.

Π’ graph mode β€” статичныС Ρ„ΠΎΡ€ΠΌΡ‹ с ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠ°Π΄Π΄ΠΈΠ½Π³ΠΎΠΌ, Ρ‡Ρ‚ΠΎ сокращаСт сСтСвой Ρ‚Ρ€Π°Ρ„ΠΈΠΊ ΠΈ ΠΏΠ°ΠΌΡΡ‚ΡŒ. Π’Π°ΠΊΠΆΠ΅ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° дСдупликация ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΉ, которая распрСдСляСт Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ ΠΌΠ΅ΠΆΠ΄Ρƒ ΡƒΠ·Π»Π°ΠΌΠΈ, сниТая Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ Π² распрСдСлСнных вычислСниях.

MetaShuffling ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΡŽ с FBGEMM Generative AI Kernel Library, позволяя ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ для vLLM ΠΈ SGLang.


πŸ“Œ Полная ΡΡ‚Π°Ρ‚ΡŒΡ Π² Π±Π»ΠΎΠ³Π΅ Pytorch


@ai_machinelearning_big_data

#AI #ML #MetaShuffling #Pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/machinelearning_interview/1794
Create:
Last Update:

🌟 MetaShuffling ΠΎΡ‚ PyTorch: ускоряСм Π²Ρ‹Π²ΠΎΠ΄ Llama 4 MoE Π±Π΅Π· Π»ΠΈΡˆΠ½ΠΈΡ… вычислСний ΠΈ Π·Π°Π΄Π΅Ρ€ΠΆΠ΅ΠΊ.

PyTorch прСдставил MetaShuffling β€” Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ для ускорСния Π²Ρ‹Π²ΠΎΠ΄Π° Π² Llama 4 MoE, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ Π΄ΠΈΠ½Π°ΠΌΠΈΠ·ΠΌΠ° ΠΈ разрСТСнности ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, связанных с ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ Ρ‚ΠΎΠΊΠ΅Π½ΠΎΠ². ВмСсто Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² padding ΠΈΠ»ΠΈ slicing, MetaShuffling ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ пСрСупорядочиваниС Ρ‚ΠΎΠΊΠ΅Π½ΠΎΠ² ΠΏΠΎ экспСртам, избавляясь ΠΎΡ‚ Π½Π΅Π½ΡƒΠΆΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ ΠΈ синхронизации ΠΌΠ΅ΠΆΠ΄Ρƒ CPU ΠΈ GPU. Π­Ρ‚ΠΎ сниТаСт использованиС памяти ΠΈ устраняСт Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ, связанныС с ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ Β«ΠΏΡƒΡΡ‚Ρ‹ΡˆΠ΅ΠΊΒ» ΠΈΠ»ΠΈ мноТСствСнными запусками ядСр.

Π’ основС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ - идСя Π³Ρ€ΡƒΠΏΠΏΠΈΡ€ΠΎΠ²ΠΊΠΈ Ρ‚ΠΎΠΊΠ΅Π½ΠΎΠ², Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΠ΄Π½ΠΎΠΌΡƒ экспСрту, Π² Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ Π±Π»ΠΎΠΊΠΈ. Π’Π°ΠΊΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ dense tensors вмСсто Ρ€Π°Π·Ρ€Π΅ΠΆΠ΅Π½Π½Ρ‹Ρ… структур, сохраняя статичныС Ρ„ΠΎΡ€ΠΌΡ‹ Π΄Π°Π½Π½Ρ‹Ρ….

Благодаря этому MetaShuffling совмСстим с ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ Π³Ρ€Π°Ρ„ΠΎΠ² (CUDAGraph, torch.compile), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΡΠΊΠΎΡ€ΡΡŽΡ‚ исполнСниС, избСгая ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½Ρ‹Ρ… синхронизаций. РСшСниС особСнно эффСктивно для Llama 4, Π³Π΄Π΅ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ MoE-слой Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅Ρ‚ лишь Ρ‡Π°ΡΡ‚ΡŒ экспСртов, Ρ‡Ρ‚ΠΎ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ создаСт динамичСскиС Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ.

β–ΆοΈΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹ΠΌΠΈ инновациями стали оптимизация ядСр GroupedGEMM ΠΈ IndexShuffling:

🟒GroupedGEMM, написанный Π½Π° Triton, ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅Ρ‚ нСсколько ΠΌΠ°Ρ‚Ρ€ΠΈΡ† Π² ΠΎΠ΄Π½ΠΎΠΌ Π²Ρ‹Π·ΠΎΠ²Π΅, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ статичСскиС ΠΈ динамичСскиС разбиСния Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ², позволяя ΠΏΡ€ΠΎΠΏΡƒΡΠΊΠ°Ρ‚ΡŒ Π½Π΅Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… экспСртов ΠΈ «лишниС» Ρ‚ΠΎΠΊΠ΅Π½Ρ‹ Π±Π΅Π· Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Ρ‚Ρ€Π°Ρ‚.

🟒IndexShuffling, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, выполняСт сортировку Ρ‚ΠΎΠΊΠ΅Π½ΠΎΠ² ΠΈ подсчСт ΠΈΡ… количСства Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ экспСртС Π·Π° ΠΎΠ΄ΠΈΠ½ ΠΏΡ€ΠΎΡ…ΠΎΠ΄, Ρ‡Ρ‚ΠΎ ΠΏΠΎ тСстам оказалось Π² 5–13 Ρ€Π°Π· быстрСС, Ρ‡Π΅ΠΌ стандартныС Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ PyTorch.

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ экспСримСнтов Π½Π° H100 80GB выглядят ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±Π΅Ρ‰Π°ΡŽΡ‰ΠΈΠΌΠΈ.

Prefill Llama 4 Maverick с FP8 GroupedGEMM достигаСт 1,197 TFlops ΠΏΡ€ΠΈ 286 мкс, Ρ‡Ρ‚ΠΎ Π±Π»ΠΈΠ·ΠΊΠΎ ΠΊ тСорСтичСскому ΠΏΡ€Π΅Π΄Π΅Π»Ρƒ GPU.

Π’ Π·Π°Π΄Π°Ρ‡Π°Ρ… дСкодирования ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ: 44,88 TFlops Π·Π° 59 мкс. Π”Π°ΠΆΠ΅ ΠΏΡ€ΠΈ ΠΌΠ°Π»ΠΎΠΌ количСствС Ρ‚ΠΎΠΊΠ΅Π½ΠΎΠ² (128) MetaShuffling ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ 80% использования пропускной способности памяти.

Для multi-host сцСнариСв MetaShuffling ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ Π³ΠΈΠ±ΠΊΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ «динамичСскими» ΠΈ «статичными» Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈ Π΄Π°Π½Π½Ρ‹Ρ…. Π’ Ρ€Π΅ΠΆΠΈΠΌΠ΅ eager (Π±Π΅Π· Π³Ρ€Π°Ρ„ΠΎΠ²) ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ минимальноС Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π±Π΅Π· синхронизации CPU-GPU.

Π’ graph mode β€” статичныС Ρ„ΠΎΡ€ΠΌΡ‹ с ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠ°Π΄Π΄ΠΈΠ½Π³ΠΎΠΌ, Ρ‡Ρ‚ΠΎ сокращаСт сСтСвой Ρ‚Ρ€Π°Ρ„ΠΈΠΊ ΠΈ ΠΏΠ°ΠΌΡΡ‚ΡŒ. Π’Π°ΠΊΠΆΠ΅ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° дСдупликация ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΉ, которая распрСдСляСт Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ ΠΌΠ΅ΠΆΠ΄Ρƒ ΡƒΠ·Π»Π°ΠΌΠΈ, сниТая Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ Π² распрСдСлСнных вычислСниях.

MetaShuffling ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΡŽ с FBGEMM Generative AI Kernel Library, позволяя ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ для vLLM ΠΈ SGLang.


πŸ“Œ Полная ΡΡ‚Π°Ρ‚ΡŒΡ Π² Π±Π»ΠΎΠ³Π΅ Pytorch


@ai_machinelearning_big_data

#AI #ML #MetaShuffling #Pytorch

BY Machine learning Interview




Share with your friend now:
group-telegram.com/machinelearning_interview/1794

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a β€œlegitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. 'Wild West' Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market.
from it


Telegram Machine learning Interview
FROM American