Telegram Group & Telegram Channel
Одиннадцать вопросов ИИ (для изучения математики и всего прочего)

Меня часто спрашивают...

Говорят, в эпоху модерна важно было наизусть знать основные факты, в эпоху постмодерна – где их найти. А в эпоху больших лингвистических моделей – как наиболее эффективно извлекать информацию по ходу диалогов на естественном языке.

В связи с этим решил описать свою "познавательную стратегию", направленную на ускорение обучения с применением LLM-ок. Применяю в основном в изучении математики, примеры соответствующие.

Общий план знакомства с новой концепцией такой:

1. Основные определения и алгоритмы
2. Связь с другими предметными областями через общие математические объекты
3. Допущения, нюансы, пресуппозиции
4. Перепроверка

Вопросы, которые задаю LLM-ке на каждом шаге соответственно, приведены далее. Стоит иметь в виду, что по-русски все современные LLM дают ответы значительно более низкого качества, перевод дан для удобства.

Основные определения и алгоритмы

1. Что такое X / What is X?

Пример: что такое сигмоида?

Вариации:
– Я всё ещё не понимаю X / I still don't understand X.
– О чем здесь речь / What's described here?

2. Напиши формулу для X / Write formula for X.

Пример: напиши формулу сигмоиды.

И наоборот:
– Объясни по-русски / Explain in plain English.

3. Как X делается по шагам / How X is performed, step-by-step?

Пример: как делается градиентный спуск, по шагам?

Связь с другими областями

4. Как связаны X и Y / How X implies Y?

Пример: как связаны MLE и лосс-функция логистической регрессии?

5. Объясни X, не упоминая Y / Explain X without referring to Y.

Пример: объясни логистическую регрессию, не упоминая GLM.

6. Объясни X с точки зрения Y / Explain X from the perspective of Y.

Пример: объясни MLE с точки зрения статистики.

7. X это то же, что Y / Is X the same as Y?

Пример: эквивариантность (equivariance) это то же, что естественное преобразование (natural transformation)?

(Прим.: один из вопросов, показывающих кардинальное превосходство LLM-ок над поисковыми системами в данной области. Выдачу гугла надо фильтровать и разбирать, LLM-ка сразу даёт резюме.)

Допущения, нюансы, пресуппозиции

8. Почему должно быть X / Why must be X?

Пример: почему в логистической регрессии log-odds должны линейно зависеть от признаков?

9. Что обычно упускают, рассказывая об X / What is usually omitted, when they speak of X?

Пример: что обычно упускают, рассказывая о логистической регрессии?

10. Какие базовые предпосылки X / What are basic assumptions of X?

Пример: какие базовые предпосылки логистической регрессии?

Перепроверка

11. Является ли этот конспект/решение корректным / Is this cheatsheet/solution correct?



group-telegram.com/metaprogramming/406
Create:
Last Update:

Одиннадцать вопросов ИИ (для изучения математики и всего прочего)

Меня часто спрашивают...

Говорят, в эпоху модерна важно было наизусть знать основные факты, в эпоху постмодерна – где их найти. А в эпоху больших лингвистических моделей – как наиболее эффективно извлекать информацию по ходу диалогов на естественном языке.

В связи с этим решил описать свою "познавательную стратегию", направленную на ускорение обучения с применением LLM-ок. Применяю в основном в изучении математики, примеры соответствующие.

Общий план знакомства с новой концепцией такой:

1. Основные определения и алгоритмы
2. Связь с другими предметными областями через общие математические объекты
3. Допущения, нюансы, пресуппозиции
4. Перепроверка

Вопросы, которые задаю LLM-ке на каждом шаге соответственно, приведены далее. Стоит иметь в виду, что по-русски все современные LLM дают ответы значительно более низкого качества, перевод дан для удобства.

Основные определения и алгоритмы

1. Что такое X / What is X?

Пример: что такое сигмоида?

Вариации:
– Я всё ещё не понимаю X / I still don't understand X.
– О чем здесь речь / What's described here?

2. Напиши формулу для X / Write formula for X.

Пример: напиши формулу сигмоиды.

И наоборот:
– Объясни по-русски / Explain in plain English.

3. Как X делается по шагам / How X is performed, step-by-step?

Пример: как делается градиентный спуск, по шагам?

Связь с другими областями

4. Как связаны X и Y / How X implies Y?

Пример: как связаны MLE и лосс-функция логистической регрессии?

5. Объясни X, не упоминая Y / Explain X without referring to Y.

Пример: объясни логистическую регрессию, не упоминая GLM.

6. Объясни X с точки зрения Y / Explain X from the perspective of Y.

Пример: объясни MLE с точки зрения статистики.

7. X это то же, что Y / Is X the same as Y?

Пример: эквивариантность (equivariance) это то же, что естественное преобразование (natural transformation)?

(Прим.: один из вопросов, показывающих кардинальное превосходство LLM-ок над поисковыми системами в данной области. Выдачу гугла надо фильтровать и разбирать, LLM-ка сразу даёт резюме.)

Допущения, нюансы, пресуппозиции

8. Почему должно быть X / Why must be X?

Пример: почему в логистической регрессии log-odds должны линейно зависеть от признаков?

9. Что обычно упускают, рассказывая об X / What is usually omitted, when they speak of X?

Пример: что обычно упускают, рассказывая о логистической регрессии?

10. Какие базовые предпосылки X / What are basic assumptions of X?

Пример: какие базовые предпосылки логистической регрессии?

Перепроверка

11. Является ли этот конспект/решение корректным / Is this cheatsheet/solution correct?

BY Metaprogramming


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/metaprogramming/406

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications.
from it


Telegram Metaprogramming
FROM American