Telegram Group & Telegram Channel
С развитием языковых моделей социальная инженерия тоже выходит на новый уровень. Обманывать простых работяг становится не так интересно, как обманывать сложных работяг)

2 дня назад вышел пост, а с ним и статья о том, как удается из ChatGPT извлекать данные, на которых он обучался. Причем в этот раз даже не приходится писать хитрые промпты про больную бабушку, достаточно лишь попросить бесконечно выводить какое-нибудь слово. Единственное условие - надо попасть в существующий токен. И пост и статья написаны очень популярным языком, поэтому даже не погруженному в тему человеку (мне) достаточно легко воспринимать текст.

Ну можно получить training data и что с того?

Вместе с какими-то случайными данными также удается достать и конфиденциальную информацию, например, номера телефонов или адреса. В посте авторы приводят похожий пример с text-to-image моделями (например, stable diffusion), в которых можно схожим образом получить почти точную фотографию существующего человека, введя его имя (требуется, чтобы человек был среди тренировочных данных). (картинка в комментах)

Почему это происходит?

Приведу цитату из статьи, которая отвечает на этот вопрос. TLDR: скорее всего модель "забывает" промпт и начинает генерировать случайные данные из памяти.

> During pre-training ... multiple documents are concatenated together to form a single training example, with a special token such as <| endoftext |> used delineate the document boundary. This causes the LM to learn to “reset” when it sees the <| endoftext |> token. ... our attack works because it creates an effect similar to this token.

Ну а training data модели начинают выдавать из-за того, что они обычно переучены, так как это помогает сильно экономить на инференсе. Из-за чего модели запоминают данные, на которых обучались. Приведу опять же цитату из статьи:

> .. the 7B parameter LLaMA-2 model trained for 2 trillion tokens outperforms the 13B parameter model trained for just 1 trillion tokens. ... work has shown that this can increase memorization ...

[obsidian]



group-telegram.com/misha_writes_code/155
Create:
Last Update:

С развитием языковых моделей социальная инженерия тоже выходит на новый уровень. Обманывать простых работяг становится не так интересно, как обманывать сложных работяг)

2 дня назад вышел пост, а с ним и статья о том, как удается из ChatGPT извлекать данные, на которых он обучался. Причем в этот раз даже не приходится писать хитрые промпты про больную бабушку, достаточно лишь попросить бесконечно выводить какое-нибудь слово. Единственное условие - надо попасть в существующий токен. И пост и статья написаны очень популярным языком, поэтому даже не погруженному в тему человеку (мне) достаточно легко воспринимать текст.

Ну можно получить training data и что с того?

Вместе с какими-то случайными данными также удается достать и конфиденциальную информацию, например, номера телефонов или адреса. В посте авторы приводят похожий пример с text-to-image моделями (например, stable diffusion), в которых можно схожим образом получить почти точную фотографию существующего человека, введя его имя (требуется, чтобы человек был среди тренировочных данных). (картинка в комментах)

Почему это происходит?

Приведу цитату из статьи, которая отвечает на этот вопрос. TLDR: скорее всего модель "забывает" промпт и начинает генерировать случайные данные из памяти.

> During pre-training ... multiple documents are concatenated together to form a single training example, with a special token such as <| endoftext |> used delineate the document boundary. This causes the LM to learn to “reset” when it sees the <| endoftext |> token. ... our attack works because it creates an effect similar to this token.

Ну а training data модели начинают выдавать из-за того, что они обычно переучены, так как это помогает сильно экономить на инференсе. Из-за чего модели запоминают данные, на которых обучались. Приведу опять же цитату из статьи:

> .. the 7B parameter LLaMA-2 model trained for 2 trillion tokens outperforms the 13B parameter model trained for just 1 trillion tokens. ... work has shown that this can increase memorization ...

[obsidian]

BY Миша пишет код




Share with your friend now:
group-telegram.com/misha_writes_code/155

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. "Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted.
from it


Telegram Миша пишет код
FROM American