Telegram Group & Telegram Channel
Forwarded from Рисерчошная
YouTube выкинул item ID и поднял качество рекомендаций. Почему это сработало?

Недавно наткнулся на статью с RecSys 2024 — Better Generalization with Semantic IDs. Ребята из Google Research разобрали, как улучшить рекомендательные системы, чтобы они не тупили на новых или редких объектах.

📥 Проблема старая, как мир
Обычно в РС каждому видео или товару дают случайный ID — просто номерок, за которым стоит эмбеддинг. Модель запоминает, что популярно, и круто ранжирует хиты. Но стоит появиться новому видео или нишевому контенту — всё, привет, она теряется. Почему? Потому что ID ничего не говорит о смысле: два похожих ролика для модели — как чужие. Плюс таблицы эмбеддингов раздуваются до миллиардов строк, а хеширование ID в кучу только добавляет шума.

😊 Что придумали?
Авторы предложили Semantic IDs — коды, которые не просто числа, а отражают содержание. Берут контент видео (аудио, картинку), прогоняют через нейронку (VideoBERT), получают вектор, а потом сжимают его в 8 коротких кодов с помощью RQ-VAE. Главное — похожие видео получают похожие коды. Например, два ролика про котиков будут частично совпадать, и модель это поймет.

Сначала коды генерят и замораживают, а потом пихают в ранжирующую модель YouTube. Есть два варианта: разбить коды на кусочки (N-граммы) или сделать умное разбиение через SentencePiece (SPM). SPM оказался круче — он сам решает, где склеить частые комбинации, а где оставить детали для редких видео.

Тестили на миллиардах видео YouTube. Обычные контентные эмбеддинги без ID провалились — модель забыла популярное. А вот Semantic IDs дали прирост: новые видео (cold-start) стали ранжироваться лучше, редкие тоже, а хиты не пострадали. SPM вообще показал себя звездой — гибко балансирует между запоминанием и обобщением.

Что это значит?
С такими ID модель не просто зубрит, а понимает связи между контентом. Новое видео про котиков сразу подхватывает опыт старых — и в топ! Плюс экономия памяти: вместо миллиардов эмбеддингов — тысячи осмысленных кодов. Масштабируется на ура.

🌸 Куда дальше?
Можно прикрутить это к профилям юзеров, улучшить кодировщик или даже замиксовать с генеративными рекомендациями. Короче, будущее РС — за умными ID, которые не просто цифры, а смысл.

➡️ Статья тут

Что думаете, зайдет такой подход в реальной жизни?

#RESEARCH #RECSYS
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/artificial_stupid/476
Create:
Last Update:

YouTube выкинул item ID и поднял качество рекомендаций. Почему это сработало?

Недавно наткнулся на статью с RecSys 2024 — Better Generalization with Semantic IDs. Ребята из Google Research разобрали, как улучшить рекомендательные системы, чтобы они не тупили на новых или редких объектах.

📥 Проблема старая, как мир
Обычно в РС каждому видео или товару дают случайный ID — просто номерок, за которым стоит эмбеддинг. Модель запоминает, что популярно, и круто ранжирует хиты. Но стоит появиться новому видео или нишевому контенту — всё, привет, она теряется. Почему? Потому что ID ничего не говорит о смысле: два похожих ролика для модели — как чужие. Плюс таблицы эмбеддингов раздуваются до миллиардов строк, а хеширование ID в кучу только добавляет шума.

😊 Что придумали?
Авторы предложили Semantic IDs — коды, которые не просто числа, а отражают содержание. Берут контент видео (аудио, картинку), прогоняют через нейронку (VideoBERT), получают вектор, а потом сжимают его в 8 коротких кодов с помощью RQ-VAE. Главное — похожие видео получают похожие коды. Например, два ролика про котиков будут частично совпадать, и модель это поймет.

Сначала коды генерят и замораживают, а потом пихают в ранжирующую модель YouTube. Есть два варианта: разбить коды на кусочки (N-граммы) или сделать умное разбиение через SentencePiece (SPM). SPM оказался круче — он сам решает, где склеить частые комбинации, а где оставить детали для редких видео.

Тестили на миллиардах видео YouTube. Обычные контентные эмбеддинги без ID провалились — модель забыла популярное. А вот Semantic IDs дали прирост: новые видео (cold-start) стали ранжироваться лучше, редкие тоже, а хиты не пострадали. SPM вообще показал себя звездой — гибко балансирует между запоминанием и обобщением.

Что это значит?
С такими ID модель не просто зубрит, а понимает связи между контентом. Новое видео про котиков сразу подхватывает опыт старых — и в топ! Плюс экономия памяти: вместо миллиардов эмбеддингов — тысячи осмысленных кодов. Масштабируется на ура.

🌸 Куда дальше?
Можно прикрутить это к профилям юзеров, улучшить кодировщик или даже замиксовать с генеративными рекомендациями. Короче, будущее РС — за умными ID, которые не просто цифры, а смысл.

➡️ Статья тут

Что думаете, зайдет такой подход в реальной жизни?

#RESEARCH #RECSYS

BY Artificial stupidity


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/artificial_stupid/476

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news. Telegram users are able to send files of any type up to 2GB each and access them from any device, with no limit on cloud storage, which has made downloading files more popular on the platform. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." Telegram Messenger Blocks Navalny Bot During Russian Election
from jp


Telegram Artificial stupidity
FROM American