Telegram Group & Telegram Channel
🖥 Задача: "Оптимизация вероятности успеха в стохастической системе"

📌 Условие:

Вы работаете над системой, где каждый эксперимент (тест, запуск модели, продукт) может быть успешным или неуспешным.
Результат одного запуска — 1 (успех) или 0 (провал).

Известно:

- Вероятность успеха одного эксперимента — неизвестна, обозначим её как p.
- У вас есть N исторических наблюдений: x1, x2, ..., xN, где каждое xi равно 0 или 1.

Вопросы:

1. Построить оценку вероятности успеха p и доверительный интервал на уровне 95%.
2. Рассчитать, сколько экспериментов нужно запустить, чтобы вероятность выхода в прибыль была выше 95%, учитывая:
- стоимость одного запуска C;
- прибыль от одного успешного эксперимента R.

---

▪️ Подсказки:

- Для оценки p используйте биномиальную модель.
- Для доверительного интервала:
- Можно использовать нормальное приближение (если выборка большая),
- Или Wilson-интервал для аккуратности.

---

▪️ Что оценивается:

- Правильная работа с вероятностями и доверием.
- Способность адекватно аппроксимировать биномиальные распределения.
- Чистота и практичность вычислений.

---

▪️ Разбор возможного решения:

▪️ 1. Оценка вероятности успеха:


# p_hat - оценка вероятности успеха
p_hat = sum(xi_list) / N


где xi_list — список из 0 и 1 (результаты экспериментов).

▪️ 2. Доверительный интервал через нормальное приближение:


import math
z = 1.96 # для 95% доверия
std_error = math.sqrt(p_hat * (1 - p_hat) / N)
lower_bound = p_hat - z * std_error
upper_bound = p_hat + z * std_error


▪️ 3. Wilson-интервал (более аккуратный):


z = 1.96 # для 95% доверия
center = (p_hat + z**2 / (2 * N)) / (1 + z**2 / N)
margin = (z * math.sqrt((p_hat * (1 - p_hat) / N) + (z**2 / (4 * N**2)))) / (1 + z**2 / N)
lower_bound = center - margin
upper_bound = center + margin


---

▪️ 4. Прибыльность эксперимента:

Формула прибыли при n экспериментах:


profit = successes * R - n * C


Требуется:


P(profit > 0) >= 0.95


Число успехов должно быть больше определённой границы:


min_successes = (n * C) / R


Если n велико, количество успехов приближается к нормальному распределению:


mean_successes = n * p_hat
std_successes = math.sqrt(n * p_hat * (1 - p_hat))


Для нормального приближения можно написать:


# Вероятность успешности через нормальное распределение
from scipy.stats import norm

# Вероятность, что количество успехов больше нужного
prob = 1 - norm.cdf(min_successes, loc=mean_successes, scale=std_successes)


Тогда перебором или через уравнение ищем минимальное n, чтобы prob >= 0.95.

---

▪️ Возможные подводные камни:

- Нельзя использовать нормальное приближение при малом N — нужна биномиальная модель.
- Неверное задание границ доверительного интервала может привести к неправильной стратегии запуска.
- Плохое понимание соотношения C и R приводит к ошибочным выводам об окупаемости.

---

📌Дополнительные вопросы:

- Как бы вы учли, что прибыль от успеха — случайная величина?
- Как пересчитать стратегии, если вероятность успеха зависит от времени (`p = f(t)`)?
- Как применить байесовский апдейт для оценки вероятности успеха?

---
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/data_math/761
Create:
Last Update:

🖥 Задача: "Оптимизация вероятности успеха в стохастической системе"

📌 Условие:

Вы работаете над системой, где каждый эксперимент (тест, запуск модели, продукт) может быть успешным или неуспешным.
Результат одного запуска — 1 (успех) или 0 (провал).

Известно:

- Вероятность успеха одного эксперимента — неизвестна, обозначим её как p.
- У вас есть N исторических наблюдений: x1, x2, ..., xN, где каждое xi равно 0 или 1.

Вопросы:

1. Построить оценку вероятности успеха p и доверительный интервал на уровне 95%.
2. Рассчитать, сколько экспериментов нужно запустить, чтобы вероятность выхода в прибыль была выше 95%, учитывая:
- стоимость одного запуска C;
- прибыль от одного успешного эксперимента R.

---

▪️ Подсказки:

- Для оценки p используйте биномиальную модель.
- Для доверительного интервала:
- Можно использовать нормальное приближение (если выборка большая),
- Или Wilson-интервал для аккуратности.

---

▪️ Что оценивается:

- Правильная работа с вероятностями и доверием.
- Способность адекватно аппроксимировать биномиальные распределения.
- Чистота и практичность вычислений.

---

▪️ Разбор возможного решения:

▪️ 1. Оценка вероятности успеха:


# p_hat - оценка вероятности успеха
p_hat = sum(xi_list) / N


где xi_list — список из 0 и 1 (результаты экспериментов).

▪️ 2. Доверительный интервал через нормальное приближение:


import math
z = 1.96 # для 95% доверия
std_error = math.sqrt(p_hat * (1 - p_hat) / N)
lower_bound = p_hat - z * std_error
upper_bound = p_hat + z * std_error


▪️ 3. Wilson-интервал (более аккуратный):


z = 1.96 # для 95% доверия
center = (p_hat + z**2 / (2 * N)) / (1 + z**2 / N)
margin = (z * math.sqrt((p_hat * (1 - p_hat) / N) + (z**2 / (4 * N**2)))) / (1 + z**2 / N)
lower_bound = center - margin
upper_bound = center + margin


---

▪️ 4. Прибыльность эксперимента:

Формула прибыли при n экспериментах:


profit = successes * R - n * C


Требуется:


P(profit > 0) >= 0.95


Число успехов должно быть больше определённой границы:


min_successes = (n * C) / R


Если n велико, количество успехов приближается к нормальному распределению:


mean_successes = n * p_hat
std_successes = math.sqrt(n * p_hat * (1 - p_hat))


Для нормального приближения можно написать:


# Вероятность успешности через нормальное распределение
from scipy.stats import norm

# Вероятность, что количество успехов больше нужного
prob = 1 - norm.cdf(min_successes, loc=mean_successes, scale=std_successes)


Тогда перебором или через уравнение ищем минимальное n, чтобы prob >= 0.95.

---

▪️ Возможные подводные камни:

- Нельзя использовать нормальное приближение при малом N — нужна биномиальная модель.
- Неверное задание границ доверительного интервала может привести к неправильной стратегии запуска.
- Плохое понимание соотношения C и R приводит к ошибочным выводам об окупаемости.

---

📌Дополнительные вопросы:

- Как бы вы учли, что прибыль от успеха — случайная величина?
- Как пересчитать стратегии, если вероятность успеха зависит от времени (`p = f(t)`)?
- Как применить байесовский апдейт для оценки вероятности успеха?

---

BY Математика Дата саентиста


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/data_math/761

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. I want a secure messaging app, should I use Telegram? READ MORE The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns
from jp


Telegram Математика Дата саентиста
FROM American