Telegram Group & Telegram Channel
🧠 Задача для дата-сайентистов: "Невидимая переменная"

У вас есть датафрейм с результатами тестирования модели A/B:


| user_id | group | conversion_rate |
|---------|--------|-----------------|
| 1001 | A | 0 |
| 1002 | A | 1 |
| 1003 | B | 0 |
| 1004 | B | 1 |
| ... | ... | ... |


По результатам A/B теста кажется, что разницы между группами нет. Вы проверили chi-squared test и Mann-Whitney — тоже ничего.

🧩 Однако ваш коллега утверждает, что в данных явно зарыта сильная зависимость, которую можно выявить, если «включить голову».

---

🔍 Вопрос:
Какой скрытый фактор мог полностью «маскировать» эффект от теста и как его можно вычислить, даже если он отсутствует в таблице напрямую?

💡 Подсказка: данные собирались в течение 30 дней, но колонка с датой/временем была потеряна при сохранении. Однако user_id — это не случайное число.

🎯 Что нужно сделать:

1. 🧠 Предположить, что user_id содержит зашумлённую информацию о времени регистрации (например, ID выдаются монотонно)
2. 🧮 Смоделировать зависимость результата от user_id и проверить, не является ли тест несбалансированным по времени
3. 📈 Построить метрику на основе сгруппированных окон по user_id и визуализировать смещение между группами A и B

🎯 Ключевая идея решения:

Хотя колонка с датой была потеряна, можно сделать разумное предположение:
🔸 `user_id` назначается **монотонно**, т.е. пользователи с меньшими ID пришли раньше.

Если эксперимент длился 30 дней, а пользователи приходили неравномерно, то:
- группа A могла доминировать в начале
- группа B — в конце

📉 А что, если в эти периоды поведение пользователей менялось? Например, была акция, баг, праздник?

🔍 **Решение: как восстановить эффект**

1. 🟤 Добавим к данным колонку `bucket = user_id // 100`, чтобы разбить пользователей на условные "временные окна"
2. 🟤 Для каждого `bucket` считаем среднюю `conversion_rate` отдельно по группам A и B
3. 🟤 Строим график `conversion_A - conversion_B` по bucket

Если кривая скачет — тест **несбалансирован по времени** и глобальное сравнение групп вводит в заблуждение.



group-telegram.com/data_math/766
Create:
Last Update:

🧠 Задача для дата-сайентистов: "Невидимая переменная"

У вас есть датафрейм с результатами тестирования модели A/B:


| user_id | group | conversion_rate |
|---------|--------|-----------------|
| 1001 | A | 0 |
| 1002 | A | 1 |
| 1003 | B | 0 |
| 1004 | B | 1 |
| ... | ... | ... |


По результатам A/B теста кажется, что разницы между группами нет. Вы проверили chi-squared test и Mann-Whitney — тоже ничего.

🧩 Однако ваш коллега утверждает, что в данных явно зарыта сильная зависимость, которую можно выявить, если «включить голову».

---

🔍 Вопрос:
Какой скрытый фактор мог полностью «маскировать» эффект от теста и как его можно вычислить, даже если он отсутствует в таблице напрямую?

💡 Подсказка: данные собирались в течение 30 дней, но колонка с датой/временем была потеряна при сохранении. Однако user_id — это не случайное число.

🎯 Что нужно сделать:

1. 🧠 Предположить, что user_id содержит зашумлённую информацию о времени регистрации (например, ID выдаются монотонно)
2. 🧮 Смоделировать зависимость результата от user_id и проверить, не является ли тест несбалансированным по времени
3. 📈 Построить метрику на основе сгруппированных окон по user_id и визуализировать смещение между группами A и B

🎯 Ключевая идея решения:

Хотя колонка с датой была потеряна, можно сделать разумное предположение:
🔸 `user_id` назначается **монотонно**, т.е. пользователи с меньшими ID пришли раньше.

Если эксперимент длился 30 дней, а пользователи приходили неравномерно, то:
- группа A могла доминировать в начале
- группа B — в конце

📉 А что, если в эти периоды поведение пользователей менялось? Например, была акция, баг, праздник?

🔍 **Решение: как восстановить эффект**

1. 🟤 Добавим к данным колонку `bucket = user_id // 100`, чтобы разбить пользователей на условные "временные окна"
2. 🟤 Для каждого `bucket` считаем среднюю `conversion_rate` отдельно по группам A и B
3. 🟤 Строим график `conversion_A - conversion_B` по bucket

Если кривая скачет — тест **несбалансирован по времени** и глобальное сравнение групп вводит в заблуждение.

BY Математика Дата саентиста


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/data_math/766

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. For tech stocks, “the main thing is yields,” Essaye said. "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world." "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare.
from jp


Telegram Математика Дата саентиста
FROM American