Telegram Group & Telegram Channel
Advanced RAG Pipelines

#rag #context

Исследования 2023 года показали, что длина контекста не сильно помогает LLM давать точные ответы:
- В этой статье показано, что при наличии нерелевантного (мусорного) контекста производительность модели резко снижается
- А вот здесь доказали, что LLM в основном фокусируется на начале контекста и его конце

Поэтому RAG, полагаю, еще некоторое время будет актуален.

Retrieval-Augmented Generation (RAG) помогает по запросу пользователя извлечь наиболее релевантный контекст документов из БД, чтобы подать их в виде контекста в LLM вместе с запросом пользователя. Это помогает модели отвечать на точные вопросы, такие как "Какое влияние оказали первые реформы Столыпина на экономику Российской Империи?".

Краткое содержание разобранных архитектур и когда они применяются:
- Document Hierarchies - когда необходима точность сравнения нескольких фактов из большой БД документов
- Knowledge Graphs - в случае семантических соединений объектов друг с другом в БД и когда одинаково важны сущности данных и их отношения с другими объектами
- Hypothetical Document Embeddings - подходит в случае "общих" запросов и «холодного старта» без первоначального контекста
- Contextual Compressors & Filters - используется при необходимости фильтрации лишнего контекста для входа в LLM
- Multi-Query Retrieval - когда пользователь ничего не знает о запрашиваемом объекте и составляет запрос общего характера
- RAG-Fusion - когда необходимо устранить разрыв между тем,
что пользователь явно задает в запросе и тем, что он собирается спрашивать
- Multimodal RAG - используется в мультимодальных LLM

Читать больше в Teletype 🔄
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/kitty_bytes/11
Create:
Last Update:

Advanced RAG Pipelines

#rag #context

Исследования 2023 года показали, что длина контекста не сильно помогает LLM давать точные ответы:
- В этой статье показано, что при наличии нерелевантного (мусорного) контекста производительность модели резко снижается
- А вот здесь доказали, что LLM в основном фокусируется на начале контекста и его конце

Поэтому RAG, полагаю, еще некоторое время будет актуален.

Retrieval-Augmented Generation (RAG) помогает по запросу пользователя извлечь наиболее релевантный контекст документов из БД, чтобы подать их в виде контекста в LLM вместе с запросом пользователя. Это помогает модели отвечать на точные вопросы, такие как "Какое влияние оказали первые реформы Столыпина на экономику Российской Империи?".

Краткое содержание разобранных архитектур и когда они применяются:
- Document Hierarchies - когда необходима точность сравнения нескольких фактов из большой БД документов
- Knowledge Graphs - в случае семантических соединений объектов друг с другом в БД и когда одинаково важны сущности данных и их отношения с другими объектами
- Hypothetical Document Embeddings - подходит в случае "общих" запросов и «холодного старта» без первоначального контекста
- Contextual Compressors & Filters - используется при необходимости фильтрации лишнего контекста для входа в LLM
- Multi-Query Retrieval - когда пользователь ничего не знает о запрашиваемом объекте и составляет запрос общего характера
- RAG-Fusion - когда необходимо устранить разрыв между тем,
что пользователь явно задает в запросе и тем, что он собирается спрашивать
- Multimodal RAG - используется в мультимодальных LLM

Читать больше в Teletype 🔄

BY Kitty Bytes AI




Share with your friend now:
group-telegram.com/kitty_bytes/11

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." You may recall that, back when Facebook started changing WhatsApp’s terms of service, a number of news outlets reported on, and even recommended, switching to Telegram. Pavel Durov even said that users should delete WhatsApp “unless you are cool with all of your photos and messages becoming public one day.” But Telegram can’t be described as a more-secure version of WhatsApp. Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news.
from jp


Telegram Kitty Bytes AI
FROM American