Telegram Group & Telegram Channel
Весёлый поиск от Deepmind [2023]

Новость про "первое открытие LLM в математике" взбудоражило публику. Статья очень интересная, но её стоит воспринимать в широком контексте, который я и постараюсь дать.

Есть такая сфера, как оптимизация/поиск программ - мы задаём набор базовых команд и ищем их последовательность, дающую максимальный профит на задаче. Я уже разбирал AutoML-Zero, в которой ищут последовательность векторно-матричных операций, максимизирующую точность нейросети, обученной с её помощью. Тот же подход использовали для создания оптимизатора Lion.

Работает это всё в форме генетического алгоритма. Мы можем легко оценить качество конкретной программы, и у нас есть популяция программ, из которых пробуем создавать новые программы с помощью мутаций. В AutoML-Zero / Lion мутации были случайные - мы добавляли / изменяли / удаляли случайную команду в ней. А это слишком неэффективно и глупо.

Новизна FunSearch именно в том, что авторы нашли способ генерировать мутации сильно лучше, чем рандомно - как раз с помощью LLM. Модели на вход подают контекст задачи и две уже существующие программы, и просят "придумать на их основе более удачную" - это по факту просьба "скрести и добавь мутацию". В результате, генетический алгоритм оптимизирует результат гораздо лучше.

Притом, что сгенерировать такую мутацию гораздо сложнее вычислительно, прирост эффективности и потолок результата выше засчёт того, что мутация с помощью LLM происходит в гораздо более разумном пространстве программ. В статье можно найти сравнение FunSearch и аналога AutoML-Zero, который не смог найти такие же крутые программы.

Добавлю, что есть и альтернатива генетике - это AlphaZero-подход, а именно AlphaTensor и AlphaDev, на счету которых тоже уже есть открытия. При этом важно, что область применения и AlphaZero, и FunSearch весьма специфична, так что, сингулярность ещё не близко.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/139
Create:
Last Update:

Весёлый поиск от Deepmind [2023]

Новость про "первое открытие LLM в математике" взбудоражило публику. Статья очень интересная, но её стоит воспринимать в широком контексте, который я и постараюсь дать.

Есть такая сфера, как оптимизация/поиск программ - мы задаём набор базовых команд и ищем их последовательность, дающую максимальный профит на задаче. Я уже разбирал AutoML-Zero, в которой ищут последовательность векторно-матричных операций, максимизирующую точность нейросети, обученной с её помощью. Тот же подход использовали для создания оптимизатора Lion.

Работает это всё в форме генетического алгоритма. Мы можем легко оценить качество конкретной программы, и у нас есть популяция программ, из которых пробуем создавать новые программы с помощью мутаций. В AutoML-Zero / Lion мутации были случайные - мы добавляли / изменяли / удаляли случайную команду в ней. А это слишком неэффективно и глупо.

Новизна FunSearch именно в том, что авторы нашли способ генерировать мутации сильно лучше, чем рандомно - как раз с помощью LLM. Модели на вход подают контекст задачи и две уже существующие программы, и просят "придумать на их основе более удачную" - это по факту просьба "скрести и добавь мутацию". В результате, генетический алгоритм оптимизирует результат гораздо лучше.

Притом, что сгенерировать такую мутацию гораздо сложнее вычислительно, прирост эффективности и потолок результата выше засчёт того, что мутация с помощью LLM происходит в гораздо более разумном пространстве программ. В статье можно найти сравнение FunSearch и аналога AutoML-Zero, который не смог найти такие же крутые программы.

Добавлю, что есть и альтернатива генетике - это AlphaZero-подход, а именно AlphaTensor и AlphaDev, на счету которых тоже уже есть открытия. При этом важно, что область применения и AlphaZero, и FunSearch весьма специфична, так что, сингулярность ещё не близко.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/139

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea.
from jp


Telegram Knowledge Accumulator
FROM American