Telegram Group & Telegram Channel
Концепция "зубчатого интеллекта"

Думаю, что многие из вас зайдя в очередной расхайпленный чат-бот с ИИ и не зная, что бы такого действительно полезного спросить, начинают с чего-нибудь вроде "А и Б сидели на трубе." и других логических задачек для детского садика. И когда вдруг чат-бот не может разгадать казалось бы столь легкую загадку, вы ликуете и закрываете чатик с чувством собственного превосходства со словами: "Да уж, далеко этой машине до меня... Долго еще она не сможет заменить такого умника как Я!".

Но почему так происходит, ведь все вокруг только и говорят о том как круто ЛЛМ решают ту или иную задачу, программирует на уровне мидлов, легко переваривает огромные массивы информации извлекая из них суть и т.д. и т.п?

Объясняя этот феномен Карпати ввел термин "jagged intelligence" (зубчатый интеллект). Этот концепт объясняет, почему языковые модели могут превосходить людей в решении сложных задач, но терпят неудачу в простых логических упражнениях.
"Зубчатый интеллект" проявляется в том, что модели демонстрируют выдающиеся результаты в областях, близко совпадающих с их обучающими данными, но показывают неожиданные провалы в задачах, требующих базовой логики или здравого смысла. Например, модель может написать сложное эссе о квантовой физике, но ошибиться в подсчете букв в простом слове.

Причина этого феномена кроется в том, что LLM не обладают истинным "пониманием" задач. Они полагаются на распознавание паттернов, а не на внутреннее осмысление, которым обладают люди. Это ограничение подчеркивает важность понимания того, что современный ИИ представляет собой очень мощный инструмент распознавания паттернов, а не систему общего интеллекта. Так что лучше пользуйтесь этой супер-силой, а не пытайтесь поставить её в тупик задачами на логику из детского сада, в этом нет никакого смысла.

Это серия постов с заблуждениями об ЛЛМ. Предыдущие здесь, здесь, здесь и здесь.

LawCoder



group-telegram.com/law_coder/198
Create:
Last Update:

Концепция "зубчатого интеллекта"

Думаю, что многие из вас зайдя в очередной расхайпленный чат-бот с ИИ и не зная, что бы такого действительно полезного спросить, начинают с чего-нибудь вроде "А и Б сидели на трубе." и других логических задачек для детского садика. И когда вдруг чат-бот не может разгадать казалось бы столь легкую загадку, вы ликуете и закрываете чатик с чувством собственного превосходства со словами: "Да уж, далеко этой машине до меня... Долго еще она не сможет заменить такого умника как Я!".

Но почему так происходит, ведь все вокруг только и говорят о том как круто ЛЛМ решают ту или иную задачу, программирует на уровне мидлов, легко переваривает огромные массивы информации извлекая из них суть и т.д. и т.п?

Объясняя этот феномен Карпати ввел термин "jagged intelligence" (зубчатый интеллект). Этот концепт объясняет, почему языковые модели могут превосходить людей в решении сложных задач, но терпят неудачу в простых логических упражнениях.
"Зубчатый интеллект" проявляется в том, что модели демонстрируют выдающиеся результаты в областях, близко совпадающих с их обучающими данными, но показывают неожиданные провалы в задачах, требующих базовой логики или здравого смысла. Например, модель может написать сложное эссе о квантовой физике, но ошибиться в подсчете букв в простом слове.

Причина этого феномена кроется в том, что LLM не обладают истинным "пониманием" задач. Они полагаются на распознавание паттернов, а не на внутреннее осмысление, которым обладают люди. Это ограничение подчеркивает важность понимания того, что современный ИИ представляет собой очень мощный инструмент распознавания паттернов, а не систему общего интеллекта. Так что лучше пользуйтесь этой супер-силой, а не пытайтесь поставить её в тупик задачами на логику из детского сада, в этом нет никакого смысла.

Это серия постов с заблуждениями об ЛЛМ. Предыдущие здесь, здесь, здесь и здесь.

LawCoder

BY LawCoder


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/law_coder/198

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war.
from jp


Telegram LawCoder
FROM American