Telegram Group & Telegram Channel
📌VLM становятся умнее, быстрее и доступнее.

Технологии, связанные с VLM переживают настоящий бум в 2025 году. Если раньше они ограничивались базовыми задачами вроде описания картинок, то теперь справляются с логическими рассуждениями, управлением роботами и генерацией видео на лету.

Основной тренд - гибкость: современные «умные» системы могут обрабатывать любые данные: текст, изображения, звук и выдавать ответы в любой форме.

В 2023 году компания Марка Цукерберга представила семейство моделей Chameleon, а команда Qwen доработала ее до Qwen2.5 Omni, которая сочетает генерацию текста и изображений через архитектуру «Thinker-Talker». Иными словами, VLM научились рассуждать.

Размер моделей перестал быть главным критерием. Вместо гигантских сетей разработчики теперь делают компактные версии, которые работают на обычных компьютерах. SmolVLM2 с 500 миллионами параметров справляется с видеоанализом, а Google упаковала мультимодальные способности в Gemma 3 в 1 миллиард параметров. Пользователям важны доступность мощь без лишних затрат.

Еще один эволюционный виток — использование смесей экспертов. Вместо того, чтобы задействовать всю сеть целиком, модели выбирают только нужные части, экономя ресурсы. Kimi-VL от Moonshot AI, например, задействует 2,8 миллиарда параметров из 16, решая сложные задачи. Это как собрать команду специалистов, где каждый отвечает за свою часть работы.

VLM научились не только понимать данные, но и действовать. В робототехнике их используют как «мозг» для управления движениями — π0 от Physical Intelligence складывает белье или собирает коробки, превращая команды в физические действия. А в повседневных задачах, например, с HuggingSnap, модели анализируют видео на смартфонах.

Безопасность тоже стала критичной. Модели ShieldGemma 2 и Llama Guard 4 проверяют контент на соответствие политикам, блокируя вредоносные изображения или текст. Это особенно важно для сервисов, где пользователи загружают персональные медиа.

Наконец, VLM учатся работать с длинными видео и документами. Qwen2.5-VL анализирует часовые видеозаписи, выделяя ключевые кадры, а ColPali помогает находить информацию в PDF без предварительной обработки.

В 2025 году VLM перестали быть «игрушкой» для лабораторий. Они внедряются в реальные задачи: от автоматизации офисной работы до помощи в медицине. Главный вопрос теперь не в том, на что способна та или иная модель, а как быстро ее внедрить на практике.

🟡Статья на Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/machinelearning_books/1010
Create:
Last Update:

📌VLM становятся умнее, быстрее и доступнее.

Технологии, связанные с VLM переживают настоящий бум в 2025 году. Если раньше они ограничивались базовыми задачами вроде описания картинок, то теперь справляются с логическими рассуждениями, управлением роботами и генерацией видео на лету.

Основной тренд - гибкость: современные «умные» системы могут обрабатывать любые данные: текст, изображения, звук и выдавать ответы в любой форме.

В 2023 году компания Марка Цукерберга представила семейство моделей Chameleon, а команда Qwen доработала ее до Qwen2.5 Omni, которая сочетает генерацию текста и изображений через архитектуру «Thinker-Talker». Иными словами, VLM научились рассуждать.

Размер моделей перестал быть главным критерием. Вместо гигантских сетей разработчики теперь делают компактные версии, которые работают на обычных компьютерах. SmolVLM2 с 500 миллионами параметров справляется с видеоанализом, а Google упаковала мультимодальные способности в Gemma 3 в 1 миллиард параметров. Пользователям важны доступность мощь без лишних затрат.

Еще один эволюционный виток — использование смесей экспертов. Вместо того, чтобы задействовать всю сеть целиком, модели выбирают только нужные части, экономя ресурсы. Kimi-VL от Moonshot AI, например, задействует 2,8 миллиарда параметров из 16, решая сложные задачи. Это как собрать команду специалистов, где каждый отвечает за свою часть работы.

VLM научились не только понимать данные, но и действовать. В робототехнике их используют как «мозг» для управления движениями — π0 от Physical Intelligence складывает белье или собирает коробки, превращая команды в физические действия. А в повседневных задачах, например, с HuggingSnap, модели анализируют видео на смартфонах.

Безопасность тоже стала критичной. Модели ShieldGemma 2 и Llama Guard 4 проверяют контент на соответствие политикам, блокируя вредоносные изображения или текст. Это особенно важно для сервисов, где пользователи загружают персональные медиа.

Наконец, VLM учатся работать с длинными видео и документами. Qwen2.5-VL анализирует часовые видеозаписи, выделяя ключевые кадры, а ColPali помогает находить информацию в PDF без предварительной обработки.

В 2025 году VLM перестали быть «игрушкой» для лабораторий. Они внедряются в реальные задачи: от автоматизации офисной работы до помощи в медицине. Главный вопрос теперь не в том, на что способна та или иная модель, а как быстро ее внедрить на практике.

🟡Статья на Huggingface

BY Машиннное обучение | Наука о данных Библиотека




Share with your friend now:
group-telegram.com/machinelearning_books/1010

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation."
from jp


Telegram Машиннное обучение | Наука о данных Библиотека
FROM American