Telegram Group & Telegram Channel
#матлог #учёба #спецсеминар

Ближайший семинар «Категориальные грамматики» состоится 17 апреля (17.04.2025).

Начало: 18:30. Аудитория: 1605, кафедра математической логики и теории алгоритмов (возможно, аудитория изменится).

Докладчик: Т.Г. Пшеницын
Тема: Грамматики слияния, сохраняющие связность

Рассматриваются ориентированные гиперграфы, гиперребра которых помечены символами некоторого алфавита. У каждого символа есть комплементарный ему. На гиперграфах определена операция слияния: два гиперребра с комплементарными метками "склеиваются" и удаляются. В грамматике слияния разрешено брать неограниченное число изоморфных копий гиперграфов из фиксированного конечного набора и применять к ним слияния; грамматика порождает компоненты связности получающихся таким образом гиперграфов. Мотивация изучения такого формализма связана с моделированием взаимодействия молекул ДНК; можно смотреть на грамматики слияния и как на своеобразное логическое исчисление с "правилом сечения" (выводимые объекты такого исчисления — связные гиперграфы).

При исследовании алгоритмических и теоретико-языковых свойств грамматик слияния возникли трудности, связанные с тем, что слияние может приводить к нарушению связности: при слиянии между двумя связными гиперграфами или внутри одного связного гиперграфа может получаться несвязный гиперграф. Чтобы исключить нарушения связности, в литературе было введено понятие грамматик слияния, сохраняющих связность. Оказалось, что для них многие задачи решаются проще, чем для грамматик слияния в целом (проще — и в смысле алгоритмической сложности, и в смысле простоты доказательств). Так, Aaron Lye в 2021 году доказал, что задача непустоты для грамматик слияния, сохраняющих связность, разрешима и является NP-полной; также он получил аналогичный результат в отношении задачи принадлежности для существенных грамматик слияния, сохраняющих связность. Докладчиком также был доказан аналог теоремы Париха для грамматик слияния, сохраняющих связность (верно ли это для всех грамматик слияния, неизвестно).

В докладе будет описано свойство сохранения связности и будет дан обзор упомянутых выше результатов. Основной акцент будет сделан на сложности самого свойства сохранения связности: будет доказано, что задача проверки, сохраняет ли грамматика слияния связность, разрешима, принадлежит классу coNEXPTIME и при этом PSPACE-трудна. Доказательства иллюстрируют типичные для данной области методы.

ВК



group-telegram.com/msu_mathlog/204
Create:
Last Update:

#матлог #учёба #спецсеминар

Ближайший семинар «Категориальные грамматики» состоится 17 апреля (17.04.2025).

Начало: 18:30. Аудитория: 1605, кафедра математической логики и теории алгоритмов (возможно, аудитория изменится).

Докладчик: Т.Г. Пшеницын
Тема: Грамматики слияния, сохраняющие связность

Рассматриваются ориентированные гиперграфы, гиперребра которых помечены символами некоторого алфавита. У каждого символа есть комплементарный ему. На гиперграфах определена операция слияния: два гиперребра с комплементарными метками "склеиваются" и удаляются. В грамматике слияния разрешено брать неограниченное число изоморфных копий гиперграфов из фиксированного конечного набора и применять к ним слияния; грамматика порождает компоненты связности получающихся таким образом гиперграфов. Мотивация изучения такого формализма связана с моделированием взаимодействия молекул ДНК; можно смотреть на грамматики слияния и как на своеобразное логическое исчисление с "правилом сечения" (выводимые объекты такого исчисления — связные гиперграфы).

При исследовании алгоритмических и теоретико-языковых свойств грамматик слияния возникли трудности, связанные с тем, что слияние может приводить к нарушению связности: при слиянии между двумя связными гиперграфами или внутри одного связного гиперграфа может получаться несвязный гиперграф. Чтобы исключить нарушения связности, в литературе было введено понятие грамматик слияния, сохраняющих связность. Оказалось, что для них многие задачи решаются проще, чем для грамматик слияния в целом (проще — и в смысле алгоритмической сложности, и в смысле простоты доказательств). Так, Aaron Lye в 2021 году доказал, что задача непустоты для грамматик слияния, сохраняющих связность, разрешима и является NP-полной; также он получил аналогичный результат в отношении задачи принадлежности для существенных грамматик слияния, сохраняющих связность. Докладчиком также был доказан аналог теоремы Париха для грамматик слияния, сохраняющих связность (верно ли это для всех грамматик слияния, неизвестно).

В докладе будет описано свойство сохранения связности и будет дан обзор упомянутых выше результатов. Основной акцент будет сделан на сложности самого свойства сохранения связности: будет доказано, что задача проверки, сохраняет ли грамматика слияния связность, разрешима, принадлежит классу coNEXPTIME и при этом PSPACE-трудна. Доказательства иллюстрируют типичные для данной области методы.

ВК

BY Кафедра математической логики и теории алгоритмов мехмата МГУ


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/msu_mathlog/204

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users.
from jp


Telegram Кафедра математической логики и теории алгоритмов мехмата МГУ
FROM American